
From XML to UDL: a unified
document language, supporting
multiple markup languages

Hans-Jürgen Rennau, parsQube GmbH
<hans-juergen.rennau@parsqube.de>

Abstract

A proposal is made how to extend the XML node model in order to be compatible with JSON markup as well as
XML markup. As XML processing technology (XPath, XQuery, XSLT, XProc) sees instances of the node mod-
el, but does not see syntax, it is thus enabled to handle JSON as well as XML. The extended node model is
dubbed a Unified Document Language, as it defines the construction of documents from building blocks (nodes)
which can be encoded in various markup languages (XML, JSON, HTML).

Table of Contents
Introduction ... 2
Distinction between markup and document language ... 3
The main idea .. 3
Goals and non-goals .. 4
Concepts ... 5

The node model as a unified document language .. 5
The node representation of JSON markup ... 5
Extensions of the XML markup language ... 5
Extensions of the XPath language ... 6
Extensions of the XQuery language ... 6

Proposal: extensions of XML, XPath and XQuery .. 6
Extensions of the XML node model ... 6
Extensions of the XML markup language ... 7
Extensions of the XML serialization model ... 9
Extensions of the XPath language .. 10
Extensions of the XQuery language .. 11

Checking use cases ... 12
Various details .. 16

UDL - pseudo-attributes and pseudo-tags ... 16
Mixing markup styles .. 17
XML syntax variant: telem ... 18
Deserializing from / serializing to JSON .. 19
Serialization: controlling the loss of information ... 21
UDL and XSD .. 21

Limitations and future research .. 21
Issue: mapping arbitrary XML to JSON ... 22
Issue: mapping JSON to readable XML ... 22
Issue: Round-tripping XML - JSON - XML ... 22
Conceivable extension of UDL: integration of standardized mappings 22

Alternatives to UDL .. 23
The mapping approach ... 23
JSONiq ... 25
Map items .. 25

Discussion ... 26
A. Deserializing from / serializing to JSON ... 26

1

Deserialization ... 26
Serialization ... 41

B. Additional support for "NCName-only JSON" ... 43
Introduction ... 43
Definition of UDL document styles: nJSON, nnJSON .. 44
Special support for the processing of nJSON documents – a further extension of XPath 44

Bibliography ... 46

Introduction
Is an XML document a string or a tree of nodes? Although in many situations it can be regarded as
both, the “node view” is certainly more essential. It ignores syntax and sees the information content.
Specialized programs (parser and serializer) provide for the translation between document string and
node tree. General processing technologies – e.g. XQuery - ignore syntax. This principle is the very
foundation of their power. Technologically speaking, the name “extensible markup language” is
questionable, as it emphasizes the surface, rather than the content.

The node view of XML is the result of an evolutionary process. The XML specification [W3C
XML] (1998) itself does not use the word “node”. The tree structure is still implicit, hidden behind
the rules of well-formedness. The infoset specification [W3C Information Set] (2004) defined the
XML document as a tree of information items, which is similar to a tree of nodes. The XDM [W3C
XDM] (2007) rounded the tree model off, pruning it and extending it by replacing character children
by a further node kind, the text node. This completed node model was at the heart of the technologi-
cal leap which led to XPath 2.0, XSLT 2.0 and XQuery 1.0.

Taking the evolution into consideration, one might wonder about the relationship between XML and
JSON. It is an obvious fact that they are two markup languages. But if XML is essentially not a
syntax, but an information language backed by a syntax – then we should regard JSON as an infor-
mation language plus syntax, too, and we should explore the relationships between their information
models, rather than dwell on the difference of syntax.

Both models are tree models for hierarchical data. Why don’t we have one single, unified model for
hierarchical data? If we had one, XML and JSON would not be two languages, but two syntactical
styles – a difference that ceases to exist during data processing, between parsing and serializing the
data. A uniform data model would enable unified data design approaches, and data processing could
be handled by one single set of technologies. XML and JSON parsers would act like adapters. Un-
fortunately, such a unified model does not exist, due to incompatibilities. Although the XML model
is larger and more complex, it is not a superset of the JSON model. XML lacks arrays and maps and
XML names cannot be arbitrary strings.

These incompatibilities throw a new light on XML. In 2011 Jonathan Robie concluded [Robie]:

The dream of one universal markup language is now past. JSON is clearly here to
stay, and it is becoming the format of choice for data interchange.

A possible response to this perception is a new dream: the dream of one universal information lan-
guage, backed by several syntax variants aka markup languages. If XML is not as universal as it
looked a few years ago – might we extend the language (no pun intended), restoring the universali-
ty? This dream is an illusion if we regard XML as a final version. In past years, any considered im-
provements of XML were too insignificant to warrant the disruptions which a new version might
entail. But now we face new proportions, dealing with the issue of universality. We should explore
our chances to regain universality by extending the XML model in a moderate, backward compati-
ble way. Eventually, the lessons JSON taught and teaches us might be to a huge benefit of XML – if
we attempt to learn them and act accordingly.

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

2

Distinction between markup and document
language

XML processing technology operates on node trees which capture the information content of XML
documents. The nodes may be constructed from XML markup text, or in other ways. An XML
document is a tree of nodes, and it may be represented by markup. Therefore one might distinguish
a document language from a markup language. The former is a system which defines basic units
of information, possible relationships between such units and rules how they can be combined into
composite entities, the document. A markup language is a set of rules how to encode a document as
a string. To complete the picture, one might add the concept of an information language, which
models information in a more general way – documents and their building blocks, the material that
may be inserted into or extracted from a document, and perhaps yet other forms of information. The
triple XML / Infoset / XDM may be viewed as a stack consisting of a markup language, a document
language and an information language. This stack of languages is the foundation of technologies –
XPath, XQuery, XSLT, XProc – which enable to address and process information with amazing
simplicity and efficiency.

Use of the term "node model"
The node sub model of the XDM can be regarded as a refactoring of the infoset. The existence
of two very similar, yet distinct tree models – a tree of information items, and a tree of nodes
representing the information items – is not really necessary and probably due to a historical
process. In this paper, it is the XDM/nodes sub model what is regarded as the document model,
rather than the infoset. The term used will be “XML node model”, or simply “node model”.

Nevertheless, JSON has begun to replace XML in many applications. JSON is a simpler and terser
markup language, and it is perfectly integrated with JavaScript objects. In many situations, JSON
has clear advantages, when neither the loss of expressive power, nor the lack of processing technol-
ogies hurt. There is a growing awareness of the need to be flexible, to avoid overhead and use the
right tools: the necessity to adapt the choice of markup language to the task at hand [Tennison].

Doubtless, the technological support for JSON will continuously evolve. Very doubtful, however, it
is if it can ever achieve the level attained by XQuery 3.0 and XSLT 3.0. Maybe this will not be
possible without a similar evolution, adding to the markup language a document language and an
information language on which to base technology. I cannot image that this would be possible with-
out reinventing many wheels, with the end result – in the best case – of a more limited version of
XQuery and XSLT.

Let us explore the alternative: loosen the tight coupling between the XML markup language and the
XML document language, extending the latter to become a unified document language (“UDL”)
supporting multiple markup languages – XML, JSON, HTML, …

The main idea
This section presents the main idea of UDL – Unified Document Language - in a suggestive way
and without any precision. It should provide a conceptual backdrop for the remaining sections. What
is a document from the “UDL point of view”?

A document is a tree of elements. An element has content, which is either text, or other elements, or
both. An element has also two properties designed to identify individual elements and to indicate the
semantics of the content. One property is the element name, the other one the element key. The
name is a QName and can be chosen irrespective of the sibling names; the key is an arbitrary string
and must not be equal to any sibling key. This duality implies three different styles how a document
may be designed:

• name oriented – the elements are identified and described by names

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

3

• key oriented – the elements are identified and described by keys

• mixed – making use of both, names and keys

A document can be represented as a string, using a markup language. XML is a markup language
well-suited for name oriented documents; JSON, on the other hand, is good at representing key ori-
ented documents. JSON is limited in this respect that it cannot represent arbitrary documents. Only
documents meeting certain constraints (using only unspecific standard names, no attributes, no
mixed content) can be represented by JSON. XML, on the other hand, can represent any document,
though not very elegantly in the case of key oriented documents.

The foundation of document processing is the XPath language, with a core designed for selecting
nodes within a document. Its query syntax supports a stepwise navigation across the document,
where each step filters a set of candidate nodes by a so-called node test. One node test – the name
test - refers to the name property. Example:

 a/b[.//c]

This is a selection wholly based on element names. Another node test – the key test – refers to the
key property. Example:

 #a/#b[.//#c]

This selection is based on element keys, rather than names. Apart from that, the logic is exactly the
same. Of course, node tests and key tests can be mixed:

 a/b[.//#c]

To generalize, element name and element key are just two properties which XPath expressions and
languages built upon XPath (XQuery, XSLT, XProc) can reference in a similar way. XML docu-
ments and JSON documents are alternative styles of how to represent a UDL document as text
string. A parser translates XML documents and JSON documents into UDL documents. A serializer
translates a UDL document into an XML document or a JSON document. The translation into XML
is always possible without loss of information. The translation into JSON deals with any loss of in-
formation as prescribed by serialization parameters.

The remaining sections present a detailed proposal how to implement the UDL by very limited ex-
tensions of the XML node model, XML markup, XPath and XQuery.

Goals and non-goals
The XML node model shall be turned into a unified document language, so that XML processing
technology - which is built on the node model, not on markup - becomes a unified processing tech-
nology. In particular, the document language must support JSON so that the processing technology
(XPath, XQuery, XSLT, XProc) becomes applicable to JSON data as well as to XML data.

From this high-level objective several goals are derived.

• Extend the XML node model, enabling it to represent the information content of JSON docu-
ments as a tree of nodes.

• Define the serialization to/deserialization from JSON markup.

• Extend the XML markup language, enabling it to express the extended node model completely.

• Extend the XML markup language, enabling the combination of XML and non-XML markup.

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

4

• Extend the XPath language, enabling navigation of JSON documents with the same degree of
terseness and flexibility.

• Extend the XQuery language, adding shorthand notation for the construction of JSON data.

• Make any changes to the XML node model in a backwards compatible way.

• Make any changes to the XML markup language in a backwards compatible way.

• Make any changes to the XPath language in a backwards compatible way.

• Make any changes to the XQuery language in a backwards compatible way.

These are non-goals.

• Do not attempt to define a mapping from JSON markup to XML markup (rather, define deseriali-
zation from / serialization to JSON).

• Do not attempt to achieve elegance concerning the XML markup representation of a node tree
derived from a JSON document.

• Do not attempt to support characters which are valid in JSON but are not valid in XML.

Concepts
The proposed approach is an elaboration of a small number of concepts.

The node model as a unified document language
1. The XML node model is extended in such a way that any JSON document can be translated into

a node tree and back again without loss of information.

2. XML markup continues to represent the complete node model – an extension of the node model
must be accompanied by an extension of the XML markup language.

3. As JSON markup represents a subset of the node model, the concept of serialization is elabora-
ted, defining distinct modes characterized by the acceptable loss of information.

The node representation of JSON markup
1. JSON structures (objects and arrays) and their members are modelled as element nodes and their

child elements, thus enabling continuous navigation along the descendant axis.

2. As JSON names can be arbitrary strings and must be unique among sibling name/value pairs,
they must not represent node names, which are QNames and need not be unique among sibling
elements. Rather, JSON names correspond to a new node property, [key]. As a consequence, ele-
ment nodes have two properties related to discovery and content semantics: a required [name]
property and an optional [key] property.

3. The contradiction implied by the facts that node names are required and JSON is incapable of
encoding node names is solved by the concept of defaulted node names: the nodes represented by
JSON markup do have a name which is an unspecific standard name that depends on the content
model of the node (representing an object, an array, a simple value or a null value). A node which
has been constructed from JSON markup can afterwards be renamed without constraints, like any
node constructed in any way.

Extensions of the XML markup language
1. The necessary extension of the XML markup language avoids new syntactical constructs – it

completely relies on the semantics of predefined QNames (e.g. udl:key) used in pseudo-attrib-

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

5

utes (constructs which look like an attribute but do not represent a node) and pseudo-tags (which
look like an element but do not represent a node).

2. XML markup should be “opened”, permitting the local insertion of non-XML markup.

Extensions of the XPath language
1. The XPath language is extended by a third node test – the key test, which checks whether the

candidate node has a given key. In a path step, the key test can be used as alternative to a name
test or kind test, which means that key tests are freely combinable with navigational axes.

2. The syntax of a key test should be as simple as the syntax of a name test.

Extensions of the XQuery language
1. Extensions of the XQuery language are not essential, as JSON data are element nodes and thus

can be processed without any restrictions.

2. Nevertheless, the addition of some abbreviated syntax for the construction of "JSON style nodes"
would be quite helpful.

Proposal: extensions of XML, XPath and
XQuery

This section describes the proposed extensions of XML, XPath and XQuery in detail.

Extensions of the XML node model
The XML node model is extended by two new node properties, [model] and [key]. The result of
these changes is a unified node model which can represent XML documents, JSON documents as
well as nested combinations of JSON and XML fragments as a tree of nodes which is accessible to
XPath navigation and, by implication, XQuery and XSLT processing.

Details

1. The node model is extended by a further node property: the [key] property. Only element nodes
have a [key], which is possibly empty. The [key] must not be empty if the [parent] is an element
whose [model] property (see below) has a value of "map". In any other case (i.e. if [parent] is
empty, or is not an element node, or is an element whose [model] is "sequence") the [key] must
be empty. The [key] of an element must not be equal to the [key] of any sibling element.

2. The node model is extended by a further node property: the [model] property. Only element no-
des have a [model], the value of which must be either "sequence" or "map". If the value is "se-
quence", the child nodes are an ordered collection and child elements must not have a [key]. Con-
versely, if the value is "map", the child nodes are an unordered collection, every child element
must have a [key] and there must not be text node children containing a non-whitespace charac-
ter. Note that the [model] can be regarded as a switch selecting one of two possible content mod-
els: sequence based (property value "sequence") or key based (property value "map"). In the for-
mer case element content is a sequence of child nodes; in the latter case element content is a map
of child elements, using the child [key]s as map keys. The former case corresponds to "conven-
tional XML", where content is always ordered by position.

3. JSON simple values are represented by (not nilled) element nodes which have simple content, or
(in the case of a zero-length string) empty content and a [schema-type] xs:untypedAtomic.

4. JSON null values are represented by nilled elements.

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

6

5. JSON objects are represented by (not nilled) element nodes with [model] equal "map". By impli-
cation, such elements may or may not have child elements, but they have no text node children
containing non-whitespace characters. The name/value pairs contained by the object are repre-
sented by the element children. Other child nodes (e.g. comments or whitespace-only text nodes)
do not correspond to name/value pairs. Note that an empty object is represented by an element
with [model] equal "map" and no child elements.

6. JSON arrays are represented by (not nilled) element nodes satisfying these constraints: (a)
[model] equal "sequence", (b) the content is either empty or contains at least one child element;
(c) there are no text node children containing non-whitespace characters. The array members are
represented by the element children. Other child nodes (e.g. comments or whitespace-only text
nodes) do not correspond to array members.

7. JSON names are represented by the [key] property of element nodes.

8. When a node tree is constructed from a JSON document, null values, simple values, arrays and
objects are represented by elements which have default node-names (udl:null, udl:val-
ue, udl:array and udl:map). As any element names in XML, these names do not have any
built-in semantics: they do not signal that the element has been constructed from a JSON value,
and they do not imply specific values of any node properties. After an update or if the node tree
is constructed in any other way, the elements representing null values, simple values, arrays and
objects may have any valid node name.

Note that JSON names and XML names correspond to two distinct node properties which are
utterly independent of each other. And also note the asymmetry: whereas JSON names are repre-
sented in XML markup by keys (via the udl:key pseudo-attribute, see next section), XML
names cannot be represented in JSON markup at all. Lossless information mapping in both direc-
tions is nevertheless enabled by arbitrarily defining JSON markup to represent nodes with default
names which are implied by other node properties.

Extensions of the XML markup language
The extensions have two purposes: (a) express the new node properties; (b) support the use of non-
XML markup within XML documents.

Expressing the new node properties
The XML markup language is extended by rules how to represent the new node properties.

Details

1. A pseudo-attribute (udl:model) is introduced which indicates the value of the [model] prop-
erty. Possible values are "sequence" and "map". The default value is "sequence", unless the ele-
ment has an ancestor element with a pseudo-attribute udl:defaultModel, in which case the
default is specified by the nearest ancestor with a udl:defaultModel pseudo-attribute.

2. A pseudo-attribute (udl:defaultModel) is introduced which sets the default value of [mod-
el] for the element itself and its descendants. The default value applies to the element itself and to
its descendant elements unless the element in question has simple content (in which case [model]
is always "sequence"), or has a [model] pseudo-attribute (which overrides the default) or has a
nearer ancestor with a udl:defaultModel pseudo-attribute (which shadows any outer de-
fault values).

3. A pseudo-attribute (udl:key) is introduced which indicates the value of the [key] property. If
an element without udl:key is child of an element whose [model] is "map", the [key] defaults
to the local name of the element. Example:

 <foo udl:model="map">

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

7

 <bar udl:key="bar">abc</foo>
 </foo>

is equivalent to:

 <foo udl:model="map">
 <bar>abc</foo>
 </foo>

Note that non-empty [key]s are only allowed for elements with [parent].[model] equal "map".
Accordingly, only such elements may have a udl:key pseudo-attribute. Example: if in the fol-
lowing markup

 <foo udl:model="map">
 <bar udl:key="21">abc</foo>
 </foo>

the value of udl:model were changed to "sequence", the markup would cease to be well-
formed.

Supporting non-XML markup
The extensions enable the use of non-XML markup either embedded in XML markup or completely
replacing it.

Details

1. The XML syntax model is extended by permitting alternative markup languages. An alterna-
tive language can be used in three different scopes: (a) the content of an element, (b) a document
section of arbitrary length, representing any number of sibling nodes, (c) the complete document.
Three languages are supported: xml, json, telem, a slightly simplified version of XML using
JSON-like constructs for simple elements meeting certain constraints. See the section called
“ Mixing markup styles ” for details.

2. The XML syntax model is extended by a pseudo-attribute, udl:markup, which specifies the
markup language used to represent the content of an element. If the value is not xml, the child
nodes of the element are the nodes constructed from the markup found in the text content. Only
element tags and the pseudo-tag udl:markupSection (see below) may have this pseudo-at-
tribute. Possible values are: xml, json, telem; default value is xml. Example:

 <temperatures y="2012"
 udl:markup="json"><![CDATA[
 "2012-08-01" : 33.2,
 "2012-08-02" : 28.9,
 "2012-08-03" : 30.0,
 "sites" : ["AB", "DK", "PP"],
 "anno" : {"automatic" : true, "reference" : false}
]]></temperatures>

Note that the scope of the alternative markup language is the content of an element and that the
alternative representation is preceded and followed by the XML start and end tag of the element.
Thus the markup of the example corresponds to an element with name “temperatures”, which has
one attribute and five child elements. An XML document can use different markup languages in
different elements.

3. The XML syntax model is extended by a pseudo-tag udl:markupSection, which delimits a
markup section, a section of the document text which uses a particular markup language. When

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

8

constructing the node tree, the pseudo-tag and its contents represent the nodes constructed from
the contained markup. The markup language is identified by the udl:markup pseudo-attribute
contained by the pseudo-tag. In the following example, the pseudo-tag represents five nodes
which are constructed from the JSON markup:

 <udl:markupSection udl:markup="JSON"><![CDATA[
 "2012-08-01" : 33.2,
 "2012-08-02" : 28.9,
 "2012-08-03" : 30.0,
 "sites" : ["AB", "DK", "PP"],
 "anno" : {"automatic" : true, "reference" : false}
]]></udl:markupSection>

Note that the pseudo-tag does itself not represent a node – it has a purely delimiting function.
Any non-XML markup may be used which is supported by the parser. Besides JSON, a parser
may support an implementation-defined set of further markup languages or domain specific lan-
guages.

4. The XML declaration is extended by a further field: markup. Possible values are: xml, json,
html; default is xml. Depending on the value, the text following the XML declaration will be
interpreted as XML markup, JSON markup or HTML markup. Example:

 <?xml markup="json" encoding="ISO-8859-1"?>
 {
 "title" : "JSON and XML",
 "year" : 2012
 }

5. The XML markup language is augmented by a rule how to parse a non-XML document without
XML declaration. If the first non-whitespace character of the text is not the “<” character, the
document text is interpreted as non-XML markup. More precisely, it is interpreted as the default
non-XML markup which is expected to be JSON, although implementation-defined alternatives
might be considered. Example: the text

 {
 "title" : "JSON and XML",
 "year" : 2012
 }

is a valid UDL document.

Extensions of the XML serialization model
The serialization model must be extended in order to support JSON output.

1. When the serialization method is xml, serialization produces conventional XML markup, aug-
mented by the pseudo-attributes udl:key, udl:model and udl:defaultModel where ap-
propriate.

2. When the serialization method is xml, the serialization may nevertheless insert non-XML mark-
up into the document text, depending on serialization parameters. The non-XML markup is con-
strained to represent element contents – that is, every chunk of non-XML markup is scoped to
represent the content of an element whose start and end tag delimit the chunk.

3. When the serialization method is xml, additional serialization parameters control the use of alter-
native markup within selected elements. Parameter json-content-elements contains a list

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

9

of expanded QNames, identifying the elements whose content shall be represented as JSON
markup. In a similar way, parameter telem-content-elements identifies the elements to
be rendered using the telem style. (For details see the section called “ Mixing markup styles ”).

4. The value range of serialization parameter method is extended by the value json. This value
lets the complete document be serialized as JSON markup.

5. A new serialization parameter info-loss specifies how to handle information loss implied by
the serialization. Special values relate to situations where JSON markup should be produced but
a node to be serialized contains information which cannot be expressed by a JSON representa-
tion. (There are three cases: (i) mixed content, (ii) the use of attributes, (iii) the use of non-stand-
ard element names.) Three parameter values are supported: json.strict, json.ignore-
names, and json.projection. In case of json.strict the serialization must be aborted;
the value json.projection mandates a projection which simply ignores any information
which cannot be represented; and the value json.ignore-names means that the QNames of
XML elements are ignored, but any other incompatibility with the JSON model (e.g. the use of
attributes) produces an unrecoverable error. (For details see the section called “ Serialization:
controlling the loss of information ”.)

Extensions of the XPath language
The extensions are designed to make the processing of JSON data as powerful and convenient as the
processing of XML data. Namely, the [key] property can be checked by a key test, similarly to the
checking of the node name by a node test.

1. The XPath language is extended by a new node test, an alternative to the existing name test and
kind test: the key test. A key test checks for the candidate node if it has a key equal to a given
key value. In path expressions, key tests can be combined with XPath axes in the same way as
kind tests and name tests. The syntax of a key test is a # character immediately followed by the
key value delimited by single or double quotes. If the key value contains only name characters,
the quotes can be omitted. If quotes are used, occurrences of the actual quote character within the
key value must be escaped by an entity or character reference. The characters & and < must al-
ways be escaped. Examples of path steps containing a key test:

 #key1
 #"key1"
 #”key 2”
 self::"#key 2"
 descendant::#key3
 parent::#"#key4"
 ancestor::#'++14085! & O'Neill'

2. A new XPath function fn:node-key returns the [key] of a given node, or the empty sequence
if the node has no [key]:

 fn:node-key($node as node()?) as xs:string?

Example: the expression

 string-join($x/ancestor-or-self::*/(concat(‘#’, fn:node-key(.)), ‘/’)

might return a result like #a/#b/#c.

3. A new XPath function fn:node-model returns the [model] of a given node, or the empty se-
quence if the node is not an element node. The [model] is represented as a string which is either
"sequence" or "map":

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

10

 fn:node-model($node as node()?) as xs:string?

4. The semantics of function fn:deep-equal is modified as follows: (a) if the arguments are el-
ement nodes with different [key]s or with different [models]s, the function returns "false"; (b) if
both arguments are element nodes with [model] equal "map", the comparison ignores non-ele-
ment children and ignores the order of element children.

5. The abbreviated syntax is extended by a more intuitive syntax for accessing array members by
index, which hides the fact that array members are child nodes:

 foo~[expr]

is equal to

 foo/*[expr]

Extensions of the XQuery language
As JSON items correspond to element nodes, there is no principal need to introduce new constructor
expressions. In element constructors, the pseudo-attributse udl:key and udl:model are used in
the same way as they are used in XML markup. In order to reduce verbosity, however, several ab-
breviated variants of element constructors are introduced.

1. Map constructors are a shorthand for constructing element nodes with name udl:map and
[model] equal "map". Syntax:

{ Expr }

 is equivalent to:

<udl:map udl:model="map">{ Expr }</udl:map>

The children of the newly constructed udl:map element are obtained by (a) evaluating the con-
tent expession to an item sequence, (b) replacing in this sequence any document node by its
document element, (c) replacing in the resulting sequence any element without a key by a copy
which has a key equal to its local name. An error is raised if the result sequence contains atomic
or text node items, or if it contains two elements with the same key. Otherwise, the expression
value is guaranteed to be an element which can be serialized to JSON without information loss.

2. Array constructors are a shorthand for constructing element nodes which correspond to a JSON
array. Syntax:

[Expr]

 is equivalent to the following code
 (where p:copy-without-key denotes a pseudo function creating an element copy without [key]):

<udl:array>{
 for $item in Expr return
 typeswitch($item)
 case document-node() return $item/*/p:copy-without-key(.)
 case element() return $item/p:copy-without-key(.)
 case text() return <udl:value>{$item}</udl:value>
 case xs:anyAtomicType return <udl:value>{$item}</udl:value>

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

11

 default return ()
}</udl:array>

The children of the newly constructed udl:array element are obtained by (a) evaluating the
content expression to an item sequence, (b) replacing in this sequence any document nodes by
their element children, (c) replacing in the resulting sequence any element with a key by a copy
which does not have a key, (d) replacing in the resulting sequence any atomic values by a
udl:value element containing the value as text. The expression value is guaranteed to be an
element which can be serialized to a JSON array without information loss.

3. Key-oriented constructors are a shorthand for constructing element nodes with a non-empty
[key]. They have the following syntax:

 Expr ':' Expr

 Examples:
 "title" : "XML and JSON"
 $ti : $tnode
 "title" : //title
 "times" : ["2012-01-01", "2012-03-31"],
 "time" : { "begin" : "2012-01-01", "end" : "2012-03-31" }

The value of this expression is determined as follows.

• Evaluate the expression to the left of the colon; the result must be a single item; determine its
string value S.

• Evaluate the expression to the right of the colon; the result R must be either the empty se-
quence or a single item.

• If R is the empty sequence, the value of the constructor expression is an element node with
name udl:null, a [key] property equal S and a [nilled] property equal true.

• If R is a node, the value of the constructor expression is a node obtained by making a copy of
R and setting its [key] property to S.

• Otherwise (that is, if R is an atomic value) the value of the constructor expression is an ele-
ment node with the name udl:value, a [key] property equal S and a single text node child
whose string value is the string value of R. (Special case: empty content if the string value of R
is a zero-length string.) The resulting element has a type annotation which depends on the type
of R. If R has a number type, the type annotation is one of these: xs:double, xs:deci-
mal, xs:integer, whatever is closest to the type of R. If R has a boolean type, the type
annotation is xs:boolean. If R is a zero-length string, the type annotation is xs:untype-
dAtomic. Otherwise, the default type annotation is used (xs:untyped).

Checking use cases
The proposal made in this paper is motivated by several main use cases. In each of these, a signifi-
cant simplification of the task should be achieved.

• JSON documents must be queried.

• JSON documents must be transformed into other JSON documents.

• JSON documents must be transformed into XML documents.

• JSON documents must be transformed into HTML documents.

• JSON documents must be transformed into other formats (e.g. CSV).

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

12

• JSON documents must be created from XML documents.

• JSON documents must be created from other formats (e.g. CSV).

The fact that XML standard technologies - XPath, XQuery, XSLT, XProc - now accept JSON docu-
ments as input suggests a great advantage. We should however take a closer look at how the pro-
cessing of JSON data looks. Somewhat arbitrarily, these main aspects may be distinguished:

• Selecting JSON data

• The use of JSON data within XPath/XQuery expressions and XSLT instructions

• Creating JSON data

The selection of data is a crucial operation, underlying virtually all forms of data processing. This is
the domain of XPath, so we shall take a look at how XPath deals with JSON data. The proposal
avoids the creation of special item types - all JSON data reside in element nodes. Therefore it can be
expected that the use of JSON data in expressions and XSLT instructions is indistinguishable from
the use of any other element nodes. The creation of JSON data amounts to the creation of element
nodes, so that again we may expect the same ease when creating JSON data as when creating any
other element nodes.

Let us contemplate a few examples. As input we use the following JSON document:

[
 {
 "year" : 2011,
 "title" : "JSON",
 "author" : [
 {"last" : "Legoux", "first" : "C."}
],
 "price" : 35.95,
 "sigs" : ["LL1002"]
 },
 {
 "year" : 2012,
 "title" : "XML",
 "author" : [
 {"last" : "Legoux", "first" : "C."},
 {"last" : "Berlin", "first" : "D."}
],
 "price" : 29.95,
 "sigs" : []
 },
 {
 "year" : 2012,
 "title" : "UDL",
 "author" : [
 {"last" : "Legoux", "first" : "C."},
 {"last" : "Okuda", "first" : "J."},
 {"last" : "Berlin", "first" : "D."}
],
 "price" : 49.95,
 "sigs" : ["KL4005", "KL4011"]
 }
]

The following table shows a series of data selections with XPath/XQuery. The expressions typically
use key tests (#foo) instead of name tests. Apart from that there is no difference compared to con-

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

13

ventional uses of XPath. Writing the expressions, one must keep in mind that object members (the
name/value pairs) and array members are represented by child elements of the element representing
the object or array, respectively.

Table 1.

Selecting JSON data with XPath/XQuery.

task expression result
count books count(/*/*) 3
maximum price max(//#price/xs:deci-

mal(.))
49.95

first book title /*/*[1]/#title/
string()

JSON

all publication years distinct-values(//
#year/string())

2011 2012

books about UDL //#title[contains(.,
'UDL')]/string()

UDL

books above 30$ //#title[../#price/
xs:decimal(.) gt 30]/
string()

JSON UDL

books with a single author //#title[count(../
#author/*) eq 1]

JSON

books without signature //#title[empty(../
#sigs/*)]

XML

books written by Legoux /*/*[.//#last = 'Le-
goux']/#title/
string()

JSON XML UDL

coauthors of Legoux distinct-values(//
#last[. eq 'Le-
goux']/../../*/
#last[. ne 'Legoux'])

Berlin Okuda

duplicate signatures for $s in distinct-
values(//#sigs/*)

where count(//#sigs[*
= $s]) gt 1

return $s

LL1002

In order to get a feeling how selected JSON data can be used in expressions and how JSON data can
be constructed, we build a report that transforms the input data into a new structure. The report shall
list for each author all titles he or she has authored, along with the publication year. An XML ver-
sion of the report might look like this:

<authors>
 <author name="Legoux, C.">
 <book title="JSON" year="2011"/>
 <book title="UDL" year="2012"/>
 <book title="XML" year="2012"/>
 </author>
 <author name="Okuda, J.">
 <book title="UDL" year="2012"/>

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

14

 </author>
 <author name="Berlin, D.">
 <book title="UDL" year="2012"/>
 <book title="XML" year="2012"/>
 </author>
</authors>

and a JSON version like this:

[
 {
 "author" : "Legoux, C.",
 "books" : [
 {"title" : "JSON", "year" : "2011"},
 {"title" : "UDL", "year" : "2012"},
 {"title" : "XML", "year" : "2012"}
]
 },
 {
 "author" : "Okuda, J.",
 "books" : [
 {"title" : "UDL", "year" : "2012"}
]
 },
 {
 "author" : "Berlin, D.",
 "books" : [
 {"title" : "UDL", "year" : "2012"},
 {"title" : "XML", "year" : "2012"}
]
 }
]

The XML report can be produced with this query:

<authors>{
 for $author in distinct-values(//#author/*/concat(#last , ', ', #first))
 let $books := //#author[*/concat(#last , ', ', #first) = $author]/..
 order by $author
 return
 <author name="{$author}">{
 for $book in $books
 order by $book/#title
 return
 <book title="{$book/#title}" year="{$book/#year}" />
 }</author>
}</authors>

and the JSON version can be produced with this query:

<udl:array>{
 for $author in distinct-values(//#author/*/concat(#last , ', ', #first))
 let $books := //#author[*/concat(#last , ', ', #first) = $author]/..
 order by $author
 return
 <udl:map udl:model="map">{

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

15

 <udl:value udl:key="author">{$author}</udl:value>,
 <udl:array udl:key="books">{
 for $book in $books
 order by $book/#title
 return
 <udl:map udl:model="map">{
 <udl:value udl:key="title">{$book/#title/string()}</udl:value>,
 <udl:value udl:key="year">{$book/#year/string()}</udl:value>
 }</udl:map>
 }</udl:array>
 }</udl:map>
}</udl:array>

The element constructors required to create JSON nodes are somewhat verbose, and the code is not
very readable as the distinctive information - the key - is embedded in stereotyped markup (e.g.
<udl:map udl:key="..."> The situation can be amended by resorting to the abbreviated
constructors for maps and arrays along with the key-oriented constructors (see the section called
“ Extensions of the XQuery language ”):

[
 for $author in distinct-values(//#author/*/concat(#last , ', ', #first))
 let $books := //#author[*/concat(#last , ', ', #first) = $author]/..
 order by $author
 return
 {
 "author" : $author,
 "books" : [
 for $book in $books
 order by $book/#title
 return
 {
 "title" : $book/#title/string(),
 "year" : $book/#year/string()
 }
]
 }
]

The code examples demonstrated that the processing of JSON data with XPath and XQuery is com-
parable to the processing of XML data. For all use cases one may expect from XPath/XQuery/
XSLT/XProc the same level of support which one is used to get when dealing with similar problems
related to XML without JSON. This may be taken as encouragement to explore the proposal in
greater detail.

Various details
UDL - pseudo-attributes and pseudo-tags

Pseudo-attributes are syntactical constructs which have the lexical form of attributes but can be dis-
tinguished from them by the use of a reserved QName. Pseudo-attributes do not represent an attrib-
ute node. Instead, they represent a node property (udl:key, udl:model) or a default value of a
property (udl:defaultModel), or they identify the markup language used locally (udl:mark-
up).

Pseudo-tags are syntactical constructs which have the lexical form of element tags but can be distin-
guished from them by the use of a reserved QName. One pseudo-tag is introduced (udl:marku-
pSection) which delimits a section of non-XML markup.

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

16

Four further names from the UDL namespace are used as default element names, given to the nodes
constructed from JSON values. It is important to note that these names have no specific semantics
and can be used as node name without restrictions like any other QName. The only specific treat-
ment of these names is when serializing to JSON using the json.strict mode. In this case a
node name which is different from the default name expected (according to the node properties) is
considered information that would be lost during serialization (see the section called “ Serialization:
controlling the loss of information ”).

The following table summarizes the use of QNames from the UDL namespace.

Table 2.

Names in the udl namespace and their usage.

Name Usage category Meaning
udl:null element name a standard name available for

nilled elements with an unspe-
cific name

udl:value element name a standard name available for a
simple content element with an
unspecific name

udl:array element name a standard name available for a
complex element with [model]
equal "sequence"

udl:map element name a standard name available for a
complex element with [model]
equal "map"

udl:markupSection pseudo tag delimits a markup section con-
taining markup which may be
non-XML; the section repre-
sents the nodes resulting from
parsing the contained markup
text

udl:markup pseudo attribute indicates the markup language
used within element content, or
within a markup section

udl:model pseudo attribute represents the [model] property
value

udl:defaultModel pseudo attribute sets a default value for the
[model] property

udl:key pseudo attribute represents the [key] property
value

Mixing markup styles
The UDL defines a unified document model which can be represented by different markup languag-
es. This unified content of heterogeneous outward shape invites not only a free choice of the markup
language actually used. It also implies that markup languages might be mixed within a document,
based on simple rules how to delimit the various chunks of markup. These rules are provided by the
udl:markup pseudo-attribute and the udl:markupSection pseudo-tag (see the section
called “ Supporting non-XML markup ”).

Occasionally there may be good reasons to use mixed styles. Consider the case that the document as
a whole cannot be represented as JSON (e.g. because of attributes and namespaces), but subtrees
represent JSON documents (perhaps imported from pure JSON sources, e.g. logged messages).

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

17

Without the mixing of markup styles, the resulting serialization would be difficult to read, due to the
very verbose XML representation of JSON nodes. It should of course be remembered that this mix-
ing of markup styles has no impact on the information content of the UDL document, which is ex-
clusively defined in terms of nodes and their properties.

The following section describes in detail an additional markup style, which amounts to a "small-
scale mixing" of XML and JSON, dubbed telem (text notation for simple elements).

XML syntax variant: telem
XML markup representing JSON data is ugly. Typically it contains many elements which corre-
spond to simple values and are tiresome to read. The distinctive property of the elements is shifted
from the eye-catching node name to a pseudo-attribute, and the markup is often inflated by explicit
type annotations:

 <udl:value udl:key=”foo”>someContent</udl:value>
 <udl:value udl:key=”bar” xsi:type="xs:integer">99</udl:value>
 <udl:value udl:key=”foobar” xsi:type="xs:boolean">true</udl:value

whereas the JSON representation could not be more succinct:

 "foo" : "someContent",
 ”bar”" : 99,
 "foobar” : true

Fragments containing only JSON nodes can best be represented by switching to JSON. But some-
times such JSON values occur interspersed with conventional XML elements which have specific
names, have attributes, etc. In such cases it is attractive to apply the JSON style to the simple values
and retain XML style for the fragment as a whole. This option is provided by the telem markup
style.

This style is XML markup augmented by a shorthand representation of simple elements meeting
several constraints:

• element name is the standard name udl:value

• simple content or nilled

• no attributes

• [schema-type] is one of these: xs:integer, xs:decimal, xs:double, xs:boolean,
xs:untypedAtomic, xs:untyped

The syntax corresponds to the JSON representation of a simple or null value, or of a name/value pair
with simple or null value, depending on whether the element has a [key]. If consecutive element
children are represented in telem style, these representations are separated by a comma. If the val-
ue is not put in quotes, it must be a number or one of the constants true, false or null, which
will be interpreted as implicit type information, following the JSON rules. Example: the following
fragment

 <e udl:model="map">
 <udl:value udl:key="mode">repeated</udl:value>
 <udl:value udl:key="nrep" xsi:type=”xs:integer”>52076</udl:value>
 <udl:value udl:key="eval" xs:type=”xs:boolean”>true</udl:value>
 <locInfo udl:key="cities">
 <udl:value>Paris</udl:value>

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

18

 <udl:value>London</udl:value>
 <udl:value>Manchester</udl:value>
 </locInfo>
 </e>

may be alternatively represented this way:

 <e udl:model="map" udl:markup=”telem”>
 "mode" : “repeated”,
 "nrep" : 52076,
 “eval” : true
 <locInfo udl:key="cities">
 "Paris",
 "London",
 "Mancester"
 </locInfo>
 </e>

Both representations have the same information content.

Deserializing from / serializing to JSON
The exact rules for translating JSON into UDL (deserialization) and for translating UDL into JSON
(serialization) are listed in the appendix (the section called “ Deserialization ” and the section called
“ Serialization ”). In this section, the principles are summarized.

Deserialization
During deserialization every JSON “item” (object, array, simple value, null) is translated into a
UDL element node whose name and content are determined by the kind of the JSON item (see Ta-
ble 3, “

Deserialization - translating JSON items into UDL nodes.
”). If the JSON item is associated with a name, the name is copied into the [key] property of the
element node; otherwise the element node has no [key].

Numbers and Boolean constants are translated into simple elements with a [schema-type] property
reflecting the source item (one of: xs:integer, xs:decimal, xs:double, xs:boolean). A
string which has non-zero length is translated into a simple element with [schema-type] xs:unty-
ped. A zero-length string is translated into an empty element node with [schema-type] xs:unty-
pedAtomic, so as to make it distinguishable from a node constructed from an empty array or ob-
ject.

Table 3.

Deserialization - translating JSON items into UDL nodes.

JSON item UDL node properties remarks
node-name model children

name/value pair see below see below see below the JSON value
can be any item
kind (null, simple
value, object, ar-
ray);

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

19

JSON item UDL node properties remarks
node-name model children

all node properties
– except for the
[key] – depend on
the item kind;

the [key] is set to
the JSON name

null udl:null sequence none element is nilled
object udl:map map elements, one for

each name/value
all child elements
have a [key]

array udl:array sequence elements, one for
each member

all child elements
without a [key]

string (non-empty) udl:value sequence text node [schema-type] is
xs:untyped

zero-length string udl:value sequence none [schema-type] is
xs:untypedAtomic

number udl:value sequence text node [schema-type] is
one of: xs:integer,
xs:decimal,
xs:double

true|false udl:value sequence text node [schema-type] is
xs:boolean

Serialization
The translation of UDL nodes into JSON items does not depend on node names; rather, it is wholly
determined by the element content (empty / element children / text child) and several properties
([key], [model], [nilled], [schema-type]). The node name is however checked if the serialization pa-
rameter info-loss is json.strict. In this case, the actual node name is compared with the
default node name associated with the given element content and properties, and an unrecoverable
error is raised if actual node name and expected node name are not the same.

See the section called “ Serialization: controlling the loss of information ” for details about how seri-
alization may accept or reject loss of information, dependent on serialization parameter info-
loss.

Table 4.

Serialization - translating UDL nodes into JSON items. CT = complex type with
complex content; ST = simple type.

node properties JSON item
children model nilled schema-type
empty sequence false xs:untyped or

CT
array (empty)

empty sequence false xs:untypedA-
tomic or ST

string (zero-
length)

empty map false any object (empty)
empty sequence true any null
element children sequence false any array

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

20

node properties JSON item
children model nilled schema-type
element children map false any object
text node sequence false xs:double number
text node sequence false xs:decimal number
text node sequence false xs:integer number
text node sequence false xs:boolean true|false
text node sequence false xs:untyped or

ST
string

Serialization: controlling the loss of information
Serialization of a document to a markup language should preserve all information so that the seriali-
zation is a complete representation from which the document may be reconstructed. Such a lossless
serialization of a UDL document is always possible for XML markup; it is only in special cases pos-
sible for JSON markup. For example, any attributes or non-default element names are lost when se-
rializing to JSON.

However, it depends on circumstances whether such loss of information renders the serialization re-
sult worthless. If, for example, the loss consists of element names only and these names were only
introduced in order to facilitate document creation or processing, with an understanding that they
will get lost during later processing steps – then a serialization which loses element names might be
as valuable as a lossless serialization. Such considerations suggest a refinement of the serialization
model: a new serialization parameter might control what losses are acceptable and what losses are
not acceptable.

The proposal of a unified document language includes such a new serialization parameter: info-
loss. Presently the parameter is only relevant when serializing to JSON. Three values are defined:

• json.strict – any information loss causes an unrecoverable error

• json.ignore-names – element names are ignored, but any other information loss causes an
unrecoverable error

• json.projection – any information that JSON cannot represent is simply ignored

In particular, info-loss equal json.projection means:

• element names are ignored

• attributes are ignored

• text node siblings of element nodes are ignored (that is, mixed content is projected onto the ele-
ment children)

UDL and XSD
The proposed extensions of the XML node model amount to the introduction of two new node prop-
erties. Obviously, they require also an extension of the XSD language. In particular, constraints con-
cerning the [key] property should be supported. However, such changes are out of scope of this pa-
per.

Limitations and future research
UDL defines the information content of JSON text in terms of a node tree and provides the rules for
translating between text and tree, that is, parsing and serialization. This makes JSON data accessible

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

21

to / producible by XML processing technologies, but there are also important use cases which are
not addressed:

1. given a JSON document, a well-readable XML representation is required

2. given an arbitrary XML document, a JSON representation is required

3. round-tripping XML - JSON - XML

As will be shown below, these are operations which require some change of information content in
the formal sense (in terms of nodes and properties), necessary to create a “semantic” equivalence.
Such a change of information content cannot be achieved based on parsing/serialization alone. This
section explores the basic limitation and makes a suggestion how an extension of the current UDL
proposal might look.

Issue: mapping arbitrary XML to JSON
A serialization of arbitrary XML documents to JSON is usually not possible without a loss of infor-
mation, as JSON cannot natively express element names, the distinction between attributes and ele-
ments, mixed content and the occurrence of siblings with the same name. This does not mean that
JSON could not be used to represent the complete information content of an arbitrary XML docu-
ment. This representation would however not be a serialization of the XML document tree to JSON,
but the (serialized) result of a transformation, a different node tree, adhering to a specific format
which is designed to capture the content of arbitrary XML documents (e.g. [JsonML]). The equiva-
lence between the resulting JSON (or the node tree it represents) and the original XML document is
not based on the data model, but established on the level of a specific mapping application (as a set
of rules).

Issue: mapping JSON to readable XML
A similar problem concerns the translation of JSON documents into readable XML documents: the
documents created by parsing JSON as defined by UDL are well-suited for processing (e.g. per
XPath, XQuery, XSLT), but when serialized into XML text look hardly readable. The practical need
to obtain a well readable XML representation of a given JSON document, however, cannot be de-
nied. (Think, for example, of a web service which may at user option deliver XML or JSON results).
Again, it is a transformation from one tree to a different tree what is required, as opposed to seriali-
zations into alternative formats.

Issue: Round-tripping XML - JSON - XML
The impossibility of serializing arbitrary XML to JSON of course implies that round-tripping XML-
JSON-XML is not generally possible solely based on serialization and parsing.

Conceivable extension of UDL: integration of standar-
dized mappings

Given the scope of UDL’s main goal – a unified document language supporting multiple markup
languages – it may be questioned if the UDL concept is complete if not addressing fundamental
mapping tasks, too. A conceivable extension of UDL might include two parts: (a) the definition of
mappings, which are standardized transformations (XML to JSON, lossless; JSON to readable
XML; (b) the integration of these mappings with parsing / serialization into new “first-class” opera-
tions, “mparse” (parse & map) and “mserialize” (map & serialize). The appendix contains a first
step in this direction [Appendix B, Additional support for "NCName-only JSON"], which is, howev-
er, limited to the use case of JSON documents in which all names are NCNames. Another limitation
is that it does not yet support attributes in the mapping result, which probably cannot be the last say.

The mapping between XML and JSON is a question to which already many answers have been giv-
en (e.g. [Lee], [Pemberton], [Couthures], [JsonML], [BaseX]). The diversity is mainly due to differ-

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

22

ences between the exact goals which the solutions pursue (concerning mapping direction, lossless-
ness, readability, configurability, …). It is unclear if the suggested extension of UDL, which in-
volves standardized mappings between XML and JSON, is a realistic task. But it is not hopeless,
neither. First, the unified node model provides a conceptual base which other mapping approaches
did not have. Second, the goals can be defined precisely, which greatly removes competition be-
tween existent solutions and a new standard. And finally, the use of other, non-standard mappings
would always remain possible.

Alternatives to UDL
How to process XML and JSON data in a unified way? The approach taken by UDL should be com-
pared with published alternatives. These fall into two categories.

• mapping approach – map JSON data to an XML representation and process the latter

• XDM extension – extend the XDM by new item types which can represent JSON data

The second category contains two variants:

• extend the XDM by JSON-specific item types (JSONiq)

• extend the XDM by generic item types (W3C XSL Working Group proposal)

The next three sections attempt to clarify the relationships between these approaches and UDL.

The mapping approach
The mapping approach (e.g. BaseX, Pemberton) is based on an XML representation of JSON data.
It uses a simple processing model:

• preprocessing: JSON => XML

• processing: applied to XML data

• optional postprocessing: serialization (possibly to JSON)

This is a clean solution, provided the XML representation preserves all information contained in the
JSON data, and the mapping rule can be applied bidirectionally without loss of information. To de-
fine such a mapping is not very difficult, as one can use reserved element names and introduce help-
er attributes in order to exclude any information loss (see Table 5, “

The use of reserved element names and helper attributes to assist in the mapping of JSON to/
from XML (examples).
” for examples).

Table 5.

The use of reserved element names and helper attributes to assist in the mapping
of JSON to/from XML (examples).

source elements attributes
BaseX json, value arrays, booleans,

nulls, numbers, ob-
jects, type

Couthures exml:anonymous exml:fullname,
exml:maxOccurs

Hunter json, item boolean, type

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

23

source elements attributes
Pemberton json name, starts, type

Outwardly, UDL looks similar to such a mapping-for-the-sake-of-processing; it is tempting to clas-
sify it as yet another mapping variant. But that would be a mistake. Mapping approaches treat the
problem as an XML application: introduce a specific XML dialect designed to achieve a particular
goal. Like any application, these approaches are free to require the use of application-specific ele-
ment names and the addition of attributes with application-specific semantics, to be evaluated by
application code. The type attribute, for example, used in [BaseX] is a helper attribute which clear-
ly duplicates xsi:type for certain values, yet nevertheless had to be introduced as additional at-
tribute, because the value range includes values array and object with ad hoc semantics dicta-
ted by the mapping task. Such attributes reveal the fact that the current XML node model does not
support a bidirectional mapping into JSON markup. To enable such a mapping, the node tree must
contain special items with serialization semantics. This is at odds with the basic principle of seriali-
zation being a process solely controlled by serialization parameters, without a need to interfere with
the information content of the node tree.

UDL does not map XML nodes to JSON structures. It redefines JSON to be a representation of no-
des. As a consequence, it need not "inject" any ad hoc items into the data tree for the sake of con-
trolling a serialization to JSON. None of the reserved element and attribute names in Table 2, “

Names in the udl namespace and their usage.
” have anything to do with JSON or serialization. Rather, they represent standard names without se-
mantics, reflect node properties or signal the markup language currently used within a well-defined
scope. The extended node model is expressive enough to represent JSON structures natively.

The main difference between UDL and mapping approaches concerns the handling of JSON names.
Mapping approaches represent JSON names as element names if possible, and if not, resort to one of
two possible solutions: either place the JSON name in an additional attribute (e.g. Pemberton), or
define a bidirectional name mapping (e.g. BaseX). But there are three differences between the con-
cepts of JSON names and XML names:

• a JSON name has no namespace component

• a JSON name can use arbitrary characters

• a JSON name must be unique amongst the JSON names of all siblings

Note that the last point (the uniqueness constraint) means that a JSON name resembles an xml:id
attribute more than an element name. It can be compared to a locally scoped xml:id attribute
(uniqueness among all element children of an element). For these reasons UDL distinguishes the
concepts of names and keys. It thus enables native relationships between nodes and XML markup
on the one hand and JSON markup on the other hand. As a result it becomes possible to regard
JSON markup and XML markup as alternative representations of an information content which is
defined in terms of nodes and their properties. Remembering Plato, one kind of “thing” is inferred
from - or may cast - two different "shadows".

Should we not keep things simple - do we need to extend the document model and introduce new
node properties? Imagine this alternative:

• the W3C publishes a small specification defining a standardized bi-directional mapping between
arbitrary strings and QNames

• the XPath language syntax is slightly extended, introducing a second notation of a name test (e.g.
#foo) which is interpreted as a string which is automatically mapped to a QName according to
the standard name mapping:

 a/b/#c equivalent to: a/b/c

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

24

 a/b/#c_d equivalent to: a/b/c__D
 a/b/#1 equivalent to: a/b/_1
 a/b/#”1 2” equivalent to: a/b/_1_00322

This is an attractive scenario: one can formulate the XPath expressions without a mental translation,
just using the names one sees in the source data. The net result is an elegant approach to the process-
ing of JSON data with XML tools.

The approach would be a good – and perhaps a better – alternative to UDL if the processing of
JSON documents with XML tools were the only goal. However, UDL's design aims at a unified
document model which expresses the entities represented by dominant markup languages in a native
way. Only this way can information content and representation (markup) be decoupled and can the
latter be switched easily at various scales (whole documents, sections or single elements) and in var-
ious contexts (data and program code).

JSONiq
JSONiq [JSONiq], [JSONiq Specification] is an extension of the XQuery language designed to add
support for JSON data. Like UDL, JSONiq extends the XDM in order to accommodate JSON struc-
tures. However, JSONiq does not change the node sub model of the XDM. Rather, two new item
types are introduced, designed to represent JSON data:

• object

• array

It is interesting to note the parallel: both, JSONiq and UDL extend the XDM in order to accommo-
date JSON data; but the changes UDL proposes are within the node sub model, whereas JSONiq
adds a second sub model for structured data, in parallel to the node model. Using the terms proposed
in the section called “Distinction between markup and document language”: JSONiq keeps the
XML document language, but extends the XML information language, whereas UDL shifts the
changes into the very document language, refraining from changes outside of the node model.

An advantage UDL offers is to represent JSON data as node trees and thus expose them to XPath
navigation. JSONiq, on the other hand, might be easier to accept exactly because it does not intro-
duce any change to the document language and therefore restricts itself to the extension of a query
language, rather than an extension of XML.

Map items
The W3C XSL Working Group has made a proposal for extending the XDM by a new item type:
map items [W3C XSLT 3.0]. They represent generic containers, but nevertheless can represent
JSON data. One should note the relationship between JSONiq and the map proposal: both ap-
proaches mandate new item types which are not nodes and yet can represent structured data; but one
(JSONiq) resorts to JSON-specific items, whereas the other advocates generic containers.

Not being nodes, map items are lightweight containers which can collect items without requiring or
imposing a structural relationship. Therefore node relationships between container and members are
not possible. This contrasts sharply with the UDL approach which models JSON containers and
their members as nodes and their child nodes. Only this way can JSON data be seamlessly integra-
ted into the navigational system based on axes and node tests.

This is not to say that such lightweight containers would not be very useful extensions of XDM.
Lightweight containers and nodes cannot replace each other. A node model is required for the navi-
gational power of XPath. Lightweight containers are required to model node relationships independ-
ently from their structural relationship. And among other benefits they enable a mapping of keys to
node references, rather than the nodes themselves, which is a highly desirable feature.

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

25

It is interesting to note a conceptual relationship between UDL and the "map proposal": the content
of an element with [model] equal "map" can be described as a map item constrained in the following
way: (a) every map value is a child element; (b) every map key is the [key] of the associated value.

Discussion
There is a growing awareness in the XML community that other markup languages do, will and
should coexist with XML. So integration is a crucial task. Being determined to integrate, one may
look at XML - as well as other markup languages - as both: markup, and information content repre-
sented by markup.

We happen to be in the possession of a rigorous, formal definition of the information content of
XML data. If this model is only approximately, but not quite capable of expressing what new mark-
up languages have to say (compare the section called “ The mapping approach ”), this may reflect
the circumstances when those formal definitions were set down: a point in time when XML struc-
ture was the only thing that had to be expressed. But now it seems a natural course to consider ex-
tending the model cautiously, turning it into a unified document language. When infoset and XDM
became recommendations, there was nothing to unify, now there is.

UDL might change our perception of markup languages: they are freely exchangeable in various
contexts - both in data resources and in program code (within XQuery and XSLT constructors) - and
at various scales - whole document, document section, single element. This becomes possible when
different markup is seen as alternative representation of unified content.

An evaluation of the UDL proposal may profit from making two distinctions. The first distinction is
between UDL's central idea and its translation into technical details. The idea is to relate multiple
markup languages to a single, unified node model, which turns XML processing technologies into
general information processing technologies. For this purpose, the node model was extended in a
particular way (e.g. adding a new node property, [key]). Doubtless, other approaches how to extend
the node model are conceivable, too. An evaluation of the UDL proposal might modify or even re-
place the model extensions by alternatives, preserving the central idea as such.

The second distinction is between what UDL does achieve and what is deliberately left to a future
extension (or to complementary components). UDL does not yet offer support for certain transfor-
mations ("mappings") which are acknowledged to be important in the context of markup integration.
In other words: the existence of a unified document language does not yet mean comprehensive sup-
port for all use cases in the context of integrating multiple markup languages. An evaluation of the
UDL proposal should regard the unified document language as a foundation for mapping support -
not as a substitute.

A. Deserializing from / serializing to JSON
This appendix contains the precise rules how to deserialize a JSON document to a tree of nodes and
how to serialize a tree of nodes to a JSON document.

Deserialization
JSON null => node
property v

a
l
u
e

name u
d

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

26

l
:
n
u
l
l

key i
f
t
h
e
n
u
l
l
i
s
t
h
e
v
a
l
u
e
o
f
a
n
a
m
e
/
v
a
l
u
e
p
a
i
r
–
t
h
e
n
a
m
e
;
e
m
p
t
y
,

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

27

o
t
h
e
r
w
i
s
e

model s
e
q
u
e
n
c
e

nilled t
r
u
e

schema type x
s
:
u
n
t
y
p
e
d

JSON object => node
property v

a
l
u
e

name u
d
l
:
m
a
p

key i
f
t
h
e
o
b
j
e
c

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

28

t
i
s
t
h
e
v
a
l
u
e
o
f
a
n
a
m
e
/
v
a
l
u
e
p
a
i
r
–
t
h
e
n
a
m
e
;
e
m
p
t
y
,
o
t
h
e
r
w
i
s
e

model m
a
p

content t
h

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

29

e
c
o
l
l
e
c
t
i
o
n
o
f
e
l
e
m
e
n
t
n
o
d
e
s
c
r
e
a
t
e
d
b
y
d
e
s
e
r
i
a
l
i
z
i
n
g
t
h
e
n
a
m
e
/
v
a
l

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

30

u
e
p
a
i
r
s

schema type x
s
:
u
n
t
y
p
e
d

JSON array => node
property v

a
l
u
e

name u
d
l
:
a
r
r
a
y

key i
f
t
h
e
a
r
r
a
y
i
s
t
h
e
v
a
l
u
e
o
f
a

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

31

n
a
m
e
/
v
a
l
u
e
p
a
i
r
–
t
h
e
n
a
m
e
;
e
m
p
t
y
,
o
t
h
e
r
w
i
s
e

model s
e
q
u
e
n
c
e

content t
h
e
c
o
l
l
e
c
t
i

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

32

o
n
o
f
e
l
e
m
e
n
t
n
o
d
e
s
c
r
e
a
t
e
d
b
y
d
e
s
e
r
i
a
l
i
z
i
n
g
t
h
e
a
r
r
a
y
m
e
m
b
e
r
s

schema type x
s
:
u

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

33

n
t
y
p
e
d

JSON simple value => node
property v

a
l
u
e

name u
d
l
:
v
a
l
u
e

key i
f
t
h
e
v
a
l
u
e
i
s
p
a
r
t
o
f
a
n
a
m
e
/
v
a
l
u
e
p
a
i
r
–

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

34

t
h
e
n
a
m
e
;
e
m
p
t
y
,
o
t
h
e
r
w
i
s
e

model s
e
q
u
e
n
c
e

content i
f
t
h
e
v
a
l
u
e
i
s
n
o
t
a
z
e
r
o
-
l
e
n
g
t

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

35

h
s
t
r
i
n
g
:
a
t
e
x
t
n
o
d
e
c
o
n
t
a
i
n
i
n
g
t
h
e
t
e
x
t
r
e
p
r
e
s
e
n
t
a
t
i
o
n
o
f
t
h
e
v
a
l
u
e

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

36

;
e
m
p
t
y
c
o
n
t
e
n
t
,
o
t
h
e
r
w
i
s
e

schema type • i
f
t
h
e
J
S
O
N
v
a
l
u
e
i
s
a
n
u
m
b
e
r
:
x
s
:
i
n
t
e
g
e
r

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

37

/
x
s
:
d
e
c
i
m
a
l
/
x
s
:
d
o
u
b
l
e

–
d
e
p
e
n
d
i
n
g
o
n
t
h
e
l
e
x
i
c
a
l
f
o
r
m

• i
f
t
h
e
J
S
O
N

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

38

v
a
l
u
e
i
s
o
n
e
o
f
t
h
e
c
o
n
s
t
a
n
t
s
t
r
u
e

o
r
f
a
l
s
e
:
x
s
:
b
o
o
l
e
a
n

• i
f
t
h
e
J
S
O
N
v

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

39

a
l
u
e
i
s
a
z
e
r
o
-
l
e
n
g
t
h
s
t
r
i
n
g
:
x
s
:
u
n
t
y
p
e
d
A
t
o
m
i
c

• o
t
h
e
r
w
i
s
e
:
x
s
:
u
n
t

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

40

y
p
e
d

Note: The XML representation of a zero-length JSON string is an empty element with type annota-
tion xs:untypedAtomic. The type annotation makes the node distinguishable from empty ele-
ments corresponding to empty arrays or objects.

Serialization
Handling attributes

If attributes are encountered, the behaviour depends on the serialization parameter info-loss: if
the value is json.projection, the attributes are ignored; otherwise, a non-recoverable error is
raised.

Handling of processing instructions and comments

Processing instructions and comments are ignored.

Handling elements

The handling of elements depends on various properties:

• the [nilled] property

• the [model] property

• the presence of element children

• the presence of text node children

• the [schema-type] property

The following table shows all details.

Table A.1.

Serialization - translating UDL nodes into JSON items.

UDL element node JSON item
[nilled] is true If serialization parame-

ter info-loss is
json.strict and
the element name is not
udl:null, a non-re-
coverable error is
raised. Otherwise the
element is serialized as
a JSON null value.

[model] = "map" If serialization parame-
ter info-loss is
json.strict and
the element name is not
udl:map, a non-re-

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

41

UDL element node JSON item
coverable error is
raised. Otherwise the
element is serialized as
a JSON object. The
contained name/value
pairs are obtained by
serializing the element
children. An error is
raised if the element
has a text node child
with non-whitespace
content.

[model] = "sequence";

at least one element
child

If serialization parame-
ter info-loss is
json.strict and
the element name is not
udl:array, a non-re-
coverable error is
raised. Otherwise the
element is serialized as
a JSON array. The ar-
ray members are ob-
tained by serializing the
element children. An
error is raised if the ele-
ment has a text node
child with non-white-
space content.

[model] = "sequence";

no element children;

at least one text node
child

If serialization parame-
ter info-loss is
json.strict and
the element name is not
udl:value, a non-re-
coverable error is
raised. Otherwise, the
element is serialized as
a JSON simple value.
The string values of the
text nodes are con-
catenated and the result
is used to construct a
simple JSON value
whose type depends on
the node's [schema-
type]: number (if [sche-
ma-type] is equal to or
derived from xs:double
or xs:decimal), Boolean
(if [schema-type] is
equal to or derived
from xs:boolean) or a
string (otherwise).

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

42

UDL element node JSON item
[model] = "sequence";

no element children;

no text node child;

[schema-type] is an
atomic type

If serialization parame-
ter info-loss is
json.strict and
the element name is not
udl:value, a non-re-
coverable error is
raised. Otherwise, the
element is serialized as
a JSON string value of
zero length.

[model] = "sequence";

no element children;

no text node child;

[schema-type] is not
atomic

If serialization parame-
ter info-loss is
json.strict and
the element name is not
udl:array, a non-re-
coverable error is
raised. Otherwise, the
element is serialized as
an empty JSON array.

B. Additional support for "NCName-only
JSON"

This appendix describes an extension of the UDL proposal which provides additional support for
processing JSON documents in which every name is an NCName. This extension is presented as an
appendix as it has a more tentative character than the core parts of the proposal and is more likely to
be modified, removed or replaced by alternatives, should the UDL proposal be evaluated as a whole.

Introduction
UDL does not map JSON documents to XML documents, but defines the information content of a
JSON document as an UDL node tree. Such a node tree can be serialized as both, JSON or XML.
The XML representation of a JSON document is ugly and not meant for human consumption. The
UDL proposal regards the readability of this XML representation as a non-goal and concentrates on
the node tree which is designed to enable a JSON processing as powerful and elegant as XML pro-
cessing. The developer is expected to design his JSON processing code while regarding the JSON
serialization, not the XML serialization.

The poor readability of XML-encoded JSON documents is caused by the fact than JSON names are
captured as node keys, rather than node names. The [key] property was introduced because the alter-
native approach of regarding JSON names as node names would introduce a dependence of the node
model’s name representation on whether the JSON name happens to be an NCName: NCNames are
preserved, and non-NCNames are changed into the result of a name mapping which is either generic
and non-semantic (e.g. “2012” to “_2012”) or semantic and application specific (e.g. “2012” to
“year-2012”). A semantic mapping is certainly an interesting solution in many situations (compare
for example [Lee]), but it gives up the advantages of a unified document language. The purely tech-
nical mapping which replaces inacceptable characters, on the other hand, is unnatural, as it amounts
to the perspective that “_2012” is the essential information content, whereas “2012” is some deviat-
ing representation.

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

43

Definition of UDL document styles: nJSON, nnJSON
Nevertheless it cannot be denied that in some situations one would like to have available both, a
readable JSON representation and a readable XML representation. For example, an increasing num-
ber of web services is expected to deliver both, XML and JSON, at user option. In this scenario,
UDL’s XML representation of a JSON document is downright inappropriate. What is needed is an
XML representation whose element names mirror as good as possible the JSON names. If the JSON
document contains non-NCName names, the mapping problem arises - but what if all JSON names
are NCNames? Let us define an nJSON document as a JSON document in which all names are
NCNames. An XML representation of an nJSON document may then reuse the JSON names as ele-
ment names (the local part of it), and yet represent a JSON document without any ambiguity: JSON-
serialization using the serialization parameter info-loss with a value json.ignore-names
will yield the same document as the strict JSON-serialization of the counterpart which sticks to un-
specific names. Let us further introduce the notion of nnJSON documents defined as follows:

1. every name is an NCName (indicated by the first “n”)

2. every element with a key has a local name equal to the key (the second “n“)

3. the document is JSON-serializable using json.ignore-names (the “JSON”)

Note that (3) implies further constraints: no attributes and no mixed content. At the same time this
definition leaves considerable freedom: namespaces and the names of key-less elements can be
chosen arbitrarily. nnJSON documents can be regarded as augmented nJSON documents – the addi-
tional information consisting of element names which can later be used or discarded, dependent on
purpose.

nnJSON documents have a remarkable property: they represent an unambiguously determined
nJSON document, to whose JSON text they can be serialized, using json.ignore-names; and
they can also be serialized to a well-readable XML representation of that JSON document. When
dealing with nJSON documents, nnJSON can be used as a normalization of information which ena-
bles unified processing code: code that is used no matter if the input is JSON or XML and whether
the output is JSON or XML. This unified code consumes an nnJSON tree and it produces an
nnJSON tree. The UDL extensions discussed so far ensure that the nnJSON output can be alterna-
tively serialized as readable XML or nJSON. The extensions do however not enable the parsing of
both, nJSON text (JSON) and nnJSON text (XML) into an nnJSON tree. After all, the information
content of nJSON and nnJSON is different and parsing by definition does not change the informa-
tion content: parsing alone will always produce one kind of tree or the other. The processing pattern
just sketched – “read and write nnJSON” - therefore has to rely on a translation of an nJSON text or
node tree into an nnJSON node tree.

Special support for the processing of nJSON docu-
ments – a further extension of XPath

After parsing an nJSON document (doc("foo.json")) it can easily be transformed into an
nnJSON document, e.g. with a simple stylesheet. nJSON documents are however so important that
they warrant a built-in support supplied by the UDL extensions. Therefore the present proposal adds
a special-purpose-function which combines the JSON parsing and its transformation to an equiva-
lent nnJSON document:

 nnjson($uri as xs:anyURI) as document-node()

Further signatures allow for control of several aspects of the result document which are not con-
strained by the definition of nnJSON documents. These are:

1. the element namespaces

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

44

2. the node name of the root element

3. the node names of other elements without a key

Consider an example. Let the following nJSON document be a response to a “getWeather” service
request:

 {
 "date" : "2012-08-06",
 "place" : " London",
 "temperatures" : ["12", "21"]
 }

Here comes a matching nnJSON document:

 <getWeatherRS xmlns="http://example.com" udl:model="map">
 <date>2012-08-06</date>
 <place>London</place>
 <temperatures>
 <t>12</t>
 <t>21</t>
 </temperatures>
</getWeatherRS>

This document looks as a fairly natural representation of the original JSON document, and it can be
serialized to the original JSON document using json.ignore-names. Note the use of an arbi-
trary namespace and the choice of intuitive element names for key-less elements. A second signa-
ture of the nnjson function enables control of these customizations:

 nnjson($uri as xs:anyURI,
 $namespace as xs:anyURI?,
 $rootName as xs:string,
 $patternsAndNames as item()*)

The patternsAndNames parameter expects an alternating sequence of XSLT pattern values and
an element name; when renaming a key-less element, the first matching pattern is located and the
name is taken from the item following the pattern item. Our example could be produced by the fol-
lowing call:

 nnjson("rsp.json",
 "http://example.com",
 "getWeatherRS",
 ("#temperatures/*", "t")
)

Using the simple signature without control paramters, on the other hand:

nnjson("rsp.json")

produces a document without namespace and with some unspecific element names:

<udl:map udl:model="map">
 <date>2012-08-06</date>
 <place>London</place>
 <temperatures>

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

45

 <udl:value>12</udl:value>
 <udl:value>21</udl:value>
 </udl:temperatures>
</udl:map>

The nnjson function is a convenience function which combines the parsing of an nJSON docu-
ment with a transformation of particular interest. The transformation is defined in such a way that
the changes of information content do not interfere with a subsequent JSON-serialization (using
json.ignore-names). This curious mixture of parsing and transformation is regarded as a first-
class operation deserving a built-in XPath function because of a well-defined relationship between
the resulting XML document and the original JSON document.

Bibliography
[BaseX] Gruen, Christian, et al. BaseX Documentation Version 7.2, section "JSON Module", p. 125-127. http://

docs.basex.org/wiki/Main_Page.

[Couthures] Couthures, Alain. JSON for XForms - adding JSON support in XForms data instances. XML Pra-
gue 2011, Conference Proceedings, p. 13-24. http://www.xmlprague.cz/2011/files/xmlprague-2011-
proceedings.pdf.

[JSON] Web resource without source information: Introducing JSON. http://json.org.

[JSONiq] Robie, Jonathan, Mathias Brantner, Daniela Florescu, Ghislain Fourny and Till Westmann. JSONiq -
XQuery for JSON, JSON for XQuery. XML Prague 2012, Conference Proceedings, p. 63-72. http://
www.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf.

[JSONiq Specification] Robie, Jonathan, Mathias Brantner, Daniela Florescu, Ghislain Fourny and Till West-
mann. JSONiq: Language Specification. http://jsoniq.com/docs/spec/en-US/html/index.html.

[Hunter] Hunter, Jason. A JSON facade on MarkLogic Server. XML Prague 2011, Conference Proceedings, p.
25-34. http://www.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf.

[JsonML] Web resource without source information: JSON Markup Language (JsonML). http://
www.jsonml.org/.

[Lee] Lee, David A. JXON: an Architecture for Schema and Annotation Driven JSON/XML Bidirectional
Transformations. Presented at Balisage: The Markup Conference 2011, Montréal, Canada, August 2 -
5, 2011. In Proceedings of Balisage: The Markup Conference 2011. Balisage Series on Markup Tech-
nologies, vol. 7 (2011). doi:10.4242/BalisageVol7.Lee01. http://www.balisage.net/Proceedings/vol7/
html/Lee01/BalisageVol7-Lee01.html.

[Pemberton] Pemberton, Steven. Treating JSON as a subset of XML. XML Prague 2012, Conference Proceed-
ings, p. 81-90. http://www.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf.

[Robie] Robie, Jonathan. A universal markup language and a universal query language. A contribution to the
discussion of Google group JSONiq, 18 October 2011. http://groups.google.com/group/jsoniq.

[Tennison] Tennison, Jeni. Opening keynote - collisions, chimera and consonance in web content. A presenta-
tion at xmlprague 2012. http://www.slideshare.net/JeniT/collisions-chimera-and-consonance-in-web-
content.

[W3C Information Set] John Cowan and Richard Tobin, eds. XML Information Set. W3C Recommendation 4
February 2004. http://www.w3.org/TR/xml-infoset/.

[W3C XDM] Mary Fernandez et al, eds. XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C Recommenda-
tion 23 January 2007. http://www.w3.org/TR/xpath-datamodel/.

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

46

[W3C XDM 3.0] Norman Walsh et al, eds. XQuery and XPath Data Model 3.0. W3C Working Draft 14 June
2011. http://www.w3.org/TR/xpath-datamodel-30/.

[W3C XML] Tim Bray et al, eds. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommenda-
tion 26 November 2008. http://www.w3.org/TR/REC-xml/.

[W3C XSLT 3.0] Michael Kay, ed. XSL Transformations (XSLT) Version 3.0. W3C Working Draft 10 July
2012. http://www.w3.org/TR/xslt-30/.

From XML to UDL: a unified docu-
ment language, supporting multiple

markup languages

47

	From XML to UDL: a unified document language, supporting multiple markup languages
	Table of Contents
	Introduction
	Distinction between markup and document language
	The main idea
	Goals and non-goals
	Concepts
	The node model as a unified document language
	The node representation of JSON markup
	Extensions of the XML markup language
	Extensions of the XPath language
	Extensions of the XQuery language

	Proposal: extensions of XML, XPath and XQuery
	Extensions of the XML node model
	Extensions of the XML markup language
	Expressing the new node properties
	Supporting non-XML markup

	Extensions of the XML serialization model
	Extensions of the XPath language
	Extensions of the XQuery language

	Checking use cases
	Various details
	UDL - pseudo-attributes and pseudo-tags
	Mixing markup styles
	XML syntax variant: telem
	Deserializing from / serializing to JSON
	Deserialization
	Serialization

	Serialization: controlling the loss of information
	UDL and XSD

	Limitations and future research
	Issue: mapping arbitrary XML to JSON
	Issue: mapping JSON to readable XML
	Issue: Round-tripping XML - JSON - XML
	Conceivable extension of UDL: integration of standardized mappings

	Alternatives to UDL
	The mapping approach
	JSONiq
	Map items

	Discussion
	A. Deserializing from / serializing to JSON
	Deserialization
	Serialization

	B. Additional support for "NCName-only JSON"
	Introduction
	Definition of UDL document styles: nJSON, nnJSON
	Special support for the processing of nJSON documents – a further extension of XPath

	Bibliography

