
The XML info space
Hans-Jürgen Rennau, parsQube GmbH

<hans-juergen.rennau@parsqube.de>
Abstract

XML-related standards imply an architecture of distributed information which integrates all accessible XML re-
sources into a coherent whole. Attempting to capture the key properties of this architecture, the concept of an
info space is defined. The concept is used as a tool for deriving desirable extensions of the standards. The pro-
posed extensions aim at a fuller realization of the potential offered by the architecture. Main aspects are better
support for resource discovery and the integration of non-XML resources. If not adopted by standards, the ex-
tensions may also be emulated by application-level design patterns and product-specific features. Knowledge of
them might therefore be of immediate interest to application developers and product designers.

Table of Contents
Introduction ... 1
Experiments and observations ... 2

Experiments ... 2
Observations .. 3

The XML info space .. 4
The definition ... 4
The limitations ... 5
The boundaries ... 5

Addressing the limitations of the info space ... 5
XLink per XPath ... 6
XLink versus data-driven navigation ... 7
Property-faced collections .. 8

Pushing the boundaries of the info space .. 16
Model oriented resource representation .. 16
The extension of XML .. 19
Markup integration ... 22

Wrapping up ... 22
Bibliography ... 23

Introduction
The first version of a successful program is not the last one. But the more complex the program, the
more care is required when making changes. When technologies and the underlying standards are
concerned, any changes must certainly be based on a deep understanding of the status quo. But the
nature of the required understanding is not obvious.

In 1938, Albert Einstein and Leopold Infeld published a book about the evolution of physics [10].
The focus was on the crucial role played by named concepts, guiding and at times limiting our
thoughts and understanding. A striking example involves the concepts of "force" and "field". At a
point in time, the scientific understanding of forces was a sort of interaction between two bodies.
Then the field was discovered as a new reality, existing independently of the presence and absence
of bodies. Without this image of a field, understanding simply could not have passed beyond a cer-
tain point.

In information technology, named concepts can play an important role in the development of indus-
try standards. Fielding [11] gave a detailed account how the abstractions of a "resource" and "re-
source representations" enabled a unified vision of the emerging internet and led to the definition of

1

an architectural style (REST - Representational State Transfer) which provided guidance in the eval-
uation of proposed changes to the standards.

How about XML – is it final or in need of a new version? Is there a direction to go? This paper
proposes a novel abstraction to guide a better understanding of the technological reality already cre-
ated, an abstraction intended to help in the evaluation of further steps. The reality implemented by
XML technology is very versatile, and doubtless many conceptualizations are useful and important.
Nevertheless, this paper suggests a new concept or image - the info space. The concept evokes a
potential which is at the same time so large and so much limited by the current state of affairs that
the perspective of a fuller realization may affect our sense of priorities. The remaining sections de-
fine the concept, explore the current limitations and suggest steps towards an increasing realization
of its potential.

Experiments and observations
To get started, we examine a few simple programming tasks and possible solutions using XPath.
The experience will invite some observations, which we then attempt to translate into a concept
characterizing the new situation which XML technology has created.

Experiments
Assume we have an XML file (foo.xml) and want to retrieve all countryCode elements, no
matter where they occur in the document. The following XPath expression does just that:

 doc("foo.xml")//countryCode

Now we want to detect all countryCode instances that do not contain a valid two-letter code ac-
cording to ISO 3166. As a code dictionary in XML format is available in the internet1 we can solve
the problem by adding a simple filter expression:

 doc("foo.xml")//countryCode[not(. = doc("http://...")//code]

When the check should be applied to several files, we only have to replace the first step by an ex-
pression which yields several documents, rather than a single document:

 (doc("foo.xml"), doc("foo2.xml"))
 //countryCode[not(. = doc("http://...")//code]

As there may be many documents to be checked, we introduce a helper resource, an XML document
listing all documents concerned. The list represents each document by a uri element containing the
document URI, which may be a file name or an HTTP address. In order to apply the check to all
documents found in the document list, again we adapt the first step of our navigation:

 doc("docs.xml")//uri/doc(.)
 //countryCode[not(. = doc("http://...")//code]

The documents may be found in the file system, an intranet or the internet, and their number could
be large. If a specific document list has to be created for our checking task, this might become in-
convenient, too. So we introduce a general purpose inventory of document URIs which describes a
whole domain of documents, only some of which have to be checked in this particular case. We cre-
ate a tree-structured document list in which only the leaf elements are uri elements containing a
document URI, whereas all inner nodes have the purpose of adding structure, implicitly creating
groups of documents. All elements - inner nodes and uri elements - may have attributes supplying
metadata pertaining to the document(s) referenced by the element itself or its descendants. Schemat-
ically, such an inventory might look like this:

 <doctree>
 <department name="d1">

1 http://www.iso.org/iso/home/standards/country_codes/country_names_and_code_elements_xml.htm

The XML info space

2

 <project name="p1">
 <xsd>
 <uri app="a1">…</uri>
 <uri app="a2">…</uri>
 </xsd>
 <msg>…
 <uri srv="s1">…</uri>
 <uri srv="s2">…</uri>
 </msg>…
 </project>
 </department>
 </doctree>

Now we can combine the selection of documents and their checking into a single expression:

 doc("doctree.xml")//project[@name="p1"]/msg/uri/doc(.)/
 //countryCode[not(. = doc("http://...")//code]

A navigation across multiple resources - an inventory, all resources referenced by uri elements
which match certain conditions, and finally the code dictionary – is achieved by a single expression,
without taking actions like opening a file and without shifting information from data sources into
intermediate variables.

The expression does not only yield the faulty codes; it resolves to the nodes containing them, which
means information and its location. Assigning the nodes to an XQuery variable ($faultyCodes),
we can later resume navigation, using those nodes as starting points. If the documents contain some-
where a changeLog element, we can collect the change logs of all faulty documents:

 $faultyCodes/ancestor::document-node()//changeLog

Observations
This little programming experience may give a feeling of handling information in a different way
than when using a general purpose language like Java or Perl. What was different?

First, we did not "load" resources - we just addressed them using an expression which was equiva-
lent to the complete information content. Compare this to Java code extracting data from a CSV file.
The equivalence enables us to to use the expression as input to navigation:

 doc("…")//countryCode

Second, navigation can be downward (e.g. "…//..") or upward (e.g. "ancestor::...") in a vertically un-
bounded way, moving from any current location in a single bout down to the very leaves under it
and up to the very root above it. Compare this to the navigation in an object tree: a downward move
can only be achieved recursively, one level per invocation, and upward navigation is impossible.

Third, resource boundaries do not impose a resistence to navigation: the effort to enter a different
document is not greater than the effort to move within the same document. The following expression
moves down to uri elements, crosses over into the referenced documents and continues its path
down into that document:

 //uri/doc(.)//countryCode

Fourth, navigation is a parallel operation, multiply rooted and cascading: the starting point may be
one or many locations, and subsequent steps resume the movement at every location reached by the
preceding step. This is different from navigation of an object tree, which is a movement from single
item to single item.

The XML info space

3

Fifth, navigation is a generic operation: the inventory, the resources to be checked and the code dic-
tionary have different semantics, but they are navigated in the same way. Navigation of an object
tree, on the other hand, must adapt each single step to object types.

Summarizing the observations, one perceives a continuous space of information: we can enter and
leave resources at will, and within them we can move up, down, forward and backward in a uniform
and effortless way. The space is a sum total of information which integrates every single accessible
XML document. Within this space, every item of information is visible and addressable.

The XML info space
This section proposes the notion of an info space as an architecture of distributed information which
comprises two models, describing content and navigation. The definition of the space is guided by
the reality introduced by XML technology but, being an abstraction, does in no way depend on
XML as its implementation. Let us summarize some important properties:

The definition
• Space content is decomposable into information items

• The space is an unstructured collection of resources

• A resource is a structured collection of items

• Inter-item relationships are well defined

• Items within a resource are related by axes

• Items in different resources are related by URI+axes

• Navigation is item-oriented

• Input, output, intermediaries are sets of items

• Input, output, intermediaries can reside in multiple resources

• Navigation is generic

• The specification of a movement can be separated from the choice of start items

• Any specification of a movement can be applied to any choice of start items

• Information is well defined

• Information is a sequence of items

• An item is a component with properties

• Semantics and value space of item properties are well defined

• Information is expressible

• Information is expressible as navigation leading to it

It is easy to see how all properties are implemented by current XML technology. The resources in
question are XML documents [6], their itemized structure is defined by the node model part of the
XDM [2] (which is more suitable as a substrate for navigation than the info set model [8]), intra-
resource relationships are defined by XPath axes [1] and inter-resource relationships by the URI
standard [3]. The navigation model is provided by XPath [1] and XQuery [4] and the information
model by the XDM in its entirety [2].

The XML info space

4

The limitations
The URIs of all accessible documents are an unstructured collection of strings. There is no built-in
way how to navigate this collection, iterate over its members or in some other way discover URIs.
Document access simply requires beforehand knowledge of a document URI. If relying on standard
XPath functions only, even file directories cannot be inspected in order to discover the files it con-
tains. To throw light on this limitation, think of a stock of information distributed over thousands of
XML documents which are accessible either as local files or via HTTP address. While on the one
hand it is a fascinating thought that anything within that pool of documents can be immediately
addressed, it can become a serious problem how to discover the resources: to find out which URI to
use. If we compared XML documents to relational table rows, the info space would resemble a rela-
tional database in which select commands are constrained to specify a primary key.

The boundaries
Given a computing site - which part of the resources of the world are in the info space, and which
are not? Any resource not accessible via network or file system is obviously not within the info
space: this is the physical boundary. But also when physical access is possible, the protocol require-
ments may not be supported by XPath functions providing document access (namely the fn:doc
function), for example due to the need of supplying authorization information or an HTTP body: this
is the API boundary. Those resources which are accessible both physically and API-wise can be
grouped into two categories: XML documents and other resources. The former are in the XML info
space, the latter are not: the media type boundary excludes any non-XML resources.

Addressing the limitations of the info space
XPath navigation has a strong part and a weak part. Within-resource movement is governed by a
powerful model – the application of semantic filters (name test and predicates) to structural relation-
ships (navigational axes). Between-resource movement, on the other hand, is mainly enabled by the
fn:doc function, which resolves a URI to the corresponding document. This is a lookup requiring
beforehand knowledge of the key – neither structural nor semantic conditions can be specified. Re-
garded as a means of navigation, the fn:doc function produces “manifold motion making little
speed” (S. T. Coleridge, “The butterfly”), as it delivers only one result item per item of knowledge.
The fn:collection function offers multiple items for the price of a single URI, but the collec-
tion is a pre-defined unit, which often will not match the actual requirements.

These limitations reflect the nature of the info space, which is an unstructured set of unrelated, indis-
tinguishable trees. Or more precisely: trees that cannot be distinguished or related until an in-memo-
ry representation is constructed, as URIs are devoid of semantics. The info space does not relate re-
source URIs to a structure (like directories), does not define inter-resource relationships (like XLink
links) and does not provide any way how to search for resources (as a database does).

Space structure, resource relationships and searchability may, however, be introduced on the
grounds of data which create a second layer of information, built upon the first layer consisting of
the resources themselves. Think of a linkbase defining relationships between documents, or a data
set associating URIs with meta information. Data-based navigation aids can be introduced on the
application level. But they might also be supported by standardization. The basic principle would be
to extend the dynamic context of XPath evaluation by novel components which expose those data to
the navigational engine of XPath - enabling novel XPath functions, perhaps even novel navigational
axes.

This section explores some possibilities how standards may be extended in order to enhance the pos-
sibilities of between-resource navigation.

The XML info space

5

XLink per XPath
XLink [9] is a specification that defines XML syntax for describing links between resources. Al-
though these resources are not necessarily nodes, we can for the sake of our discussion treat XLink
as a language for defining node relationships. The basic unit of resource linkage is an arc which
maps one set of resources (the starting resources) to another set of resources (the ending resources).
The arc enables “traversal” from any one of the starting resources to any one of the ending resour-
ces. This concept of XLink traversal is similar, though not identical, to XPath navigation. Both rely
on a unidirectional mapping from a start or context node to a set of result nodes. Consequently, the
definition of XLink arcs might be viewed as the definition of potential navigation steps available to
XPath. Let us investigate possibilities to translate XLink-defined arcs into XPath steps.

XLink defines containers, called extended links, which hold together a set of resource locators and
associated arcs, which are mappings between subsets of the complete set. (For the sake of clarity,
we ignore the possibility of using local resources instead of or together with resource locators.) The
extended link can assign to each of its resources an optional label (NCName). The label is like a
property attached to the resources which allows them to be identified and grouped into subsets of the
complete set contained by the extended link. The start and the end of an arc is defined in terms of an
optional label value: if a label value is set, the corresponding subset of resources comprises all re-
sources which have this label; if no label value is set, the subset is equal to the complete set. Consid-
er the following extended link containing four arcs:

 <foo xlink:type='extended'>
 <a1 xlink:type='arc' xlink:from='a' xlink:to='b'/>
 <a2 xlink:type='arc' xlink:to='b'/>
 <a3 xlink:type='arc' xlink:from='a'/>
 <a4 xlink:type='arc' />

 <res xlink:type='locator' xlink:href='…1' xlink:label='a'/>
 <res xlink:type='locator' xlink:href='…2' xlink:label='b'/>
 <res xlink:type='locator' xlink:href='…3' xlink:label='b'/>
 <res xlink:type='locator' xlink:href='…4' xlink:label='b'/>
 <res xlink:type='locator' xlink:href='…5' xlink:label='c'/>
 </foo>

The arc <a1> leads from the single one resource associated with a label “a” to all three resources
with a label “b”; <a2> leads from any one of the five resources to the three resources with a label
“b”; <a3> leads from the resource with a label “a” to all five resources, including itself; and <a4>
leads from any one of the five resources to all five resources, including itself.

An arc is an option for navigation. Given a node (N), a navigation step may be specified by selecting
a particular arc (A). The destination is the collection of nodes which

• is empty if N is not among the starting resources of A

• comprises the ending resources of A, otherwise

Such navigation might be integrated into XPath if two changes are applied to the current standards:

• extend the static context of XPath by a component Available extended links, comprising the ex-
tended links which are “in scope”. (These extended links may be imported as linkbase documents,
analogously to the import of in-scope schemas as schema documents.)

• define a new kind of navigation step which is based on the selection of a particular arc

The new kind of navigation step may be a combination of an xlink axis with an “arc test” select-
ing arcs. The expression result could then be collected from the ending resources of the selected
arcs.

The XML info space

6

How to specify the selection of arcs? The XLink standard defines extended links to have an optional
role property and arcs to have an optional arcrole property, where both properties have as val-
ue a URI. Therefore a selection of arcs might be specified by two URIs, a role selecting extended
links and an arcrole selecting arcs within those links. If we now deviate from the XLink standard
and assume that arcs have an additional property, an “arclabel” with an NCName as value, then
arc selection might be specified by a single QName, as a QName consists of a URI plus an
NCName. The “arc test” selecting an arc might now be specified by a QName, in analogy to the
name test which is also specified by a QName, but selects elements or attributes . Consider the fol-
lowing expression:

 xlink::x:y

Its value would be determined as follows.

1. select from the Available extended links those with a role equal to the URI bound to prefix
“x”

2. within the selected extended links select all arcs with an arclabel equal to “y”

3. filter the selected arcs, retaining only those whose set of starting resources “matches” the context
node (see below for details)

4. obtain as the expression value the union of the ending resources of all arcs retained by the previ-
ous step

A remaining issue is the definition of when a set of starting resources “matches” the context node.
The proposal is to define matching as containment: the starting resources include a node which is
either identical to or contains the context node. Consider this expression:

 doc('foo.xml')//a/xlink::x:y

The selected arcs may include as starting resource either the document “foo.xml”, or the “a” element
to which the xlink step is applied, or any ancestor of that “a” element.

As an alternative to using a new xlink axis, XLink navigation might be supported by a new stand-
ard function, fn:xlink. In this case, the set of extended links to be considered might alternatively
be taken from the static context or from linkbase documents supplied as a parameter:

 fn:xlink($arcTest as xs:QName) as node()*
 fn:xlink($arcTest as xs:QName, $linkbases as node()*) as node()*

XLink versus data-driven navigation
XLink defines resource relationships in terms of URI relationships - static mappings between single
URIs and/or URI collections. The XLink model does not cover well a frequent requirement – data-
driven navigation, which is guided by data and unawares of structural relationships between a cur-
rent context and the destination. For example, assume a document D containing a country code, and
further assume a collection of documents describing countries, one country per document: how can
the evaluation of D take advantage of the country description matching the country code?

Currently, the navigation model of XPath does not offer standardized support for such tasks. Work-
ing within the bounds of a single document, this is felt less acutely as expressions like //coun-
try[@code eq 'FR'] have a sweeping nature which removes any structural assumptions apart
from which document the information is located in. But when the target might be located in other
documents, the lack of support may become an issue. Navigation between documents requires
knowledge of a URI. In the general case this will be the target document URI, as support for named
collections (the fn:collection function) is implementation-defined and hence not portable.

The XML info space

7

Without such support we simply cannot “look into” other documents without first providing a docu-
ment URI.

If the processor does support the fn:collection function, we can access documents without
knowledge of individual document URIs. But collections are a problematic answer to the challenge
of data-driven navigation. The collection is not yet the destination of our navigation, but a set of
candidates from which to select the destination. In order to navigate into one country description,
two hundred country descriptions have to be parsed (unless they are located in an XML database)
and queried (unless we can resort to a database index). The greater the collection, the greater the
overhead incurred by processing the collection in order to identify the one or few matching items.
When there are a large number of candidates – e.g. accumulated log messages – the approach of
constructing all candidate nodes and then filtering them can quickly become unfeasible.

The problem is deep-rooted. As navigational axes are bounded by the document border, convention-
al navigation cannot lead to the discovery of information in other documents, unless the URIs of
those documents are either known beforehand or supplied by a document visited at an earlier navi-
gation step. The next section develops a concept of data-driven navigation which is based on a filter-
ing of collections which does not require the prior in-memory construction of its nodes.

Property-faced collections
External node properties

Every XML node has a set of properties defined by the XDM data model. An element node, for
example, has twelve properties, which include the name, relationships to other nodes ([parent],
[children], [attributes]), a type, a typed value and a string value. Evaluation of these properties is
what drives XPath navigation, guiding it from a set of starting points to a set of destination nodes.

In certain situations, however, the locating of nodes might be greatly simplified if we manage to
associate nodes with additional properties which help us to identify the nodes of interest. Such prop-
erties could represent metadata, or they could reflect the contained data, for example echoing a val-
ue found at a particular data path within the node, or providing a value derived from contained data,
like a minimum or maximum. As these additional properties are not XDM properties, their values
are not part of the node data. Hence we call them external node properties. Their nature implies an
interesting possibility: they can provide information about a node which is accessible without con-
structing the node. Access to such information might enhance the navigational model of XPath in
general, and add support for data-driven navigation in particular. The following sections describe an
approach how to achieve this.

An external property has a name and a value. A set of external node properties can be modelled as a
map with which the node is associated. The map entries have a key which represents the property
name, and a value which represents the property value. Such a map we call a property face of the
node, or p-face for short. Striving to keep things simple, we constrain external node properties to
have an NCName and a value which is a sequence of atomic items of type xs:untypedAtomic.
The value space of p-faces is accordingly constrained.

Property-faced collections
A p-face is not part of the node data – it is merely associated with them. This relationship can be
compared to the general relationship between the keys and values of a map: the keys are not part of
the values, but only associated with them in the context of the map. Such an association is not glob-
al, but scoped to the map.

The association between a node and its p-face is provided by a node collection which contains the
node. We introduce the concept of a p-faced collection (short for property-faced collection), which
is a conventional node collection plus a mapping associating each node with a p-face. We do not
constrain the individual p-faces to use the same property names: the number and names of external
properties can vary from node to node.

The XML info space

8

The following table shows a simple example of a p-faced collection. In this case, all collection
members are associated with the same set of external properties. The collection may therefore be
represented by a table in which one column identifies the node and the remaining columns represent
external properties.

Table 1.

Example of a p-faced collection. The collection associates each node with three
external properties. Property value items are separated by comma.

node URI countryCode neighbourCountries rivers
file://coun-
tries/fr.xml

fr at, be, ch, de, es, it, lu,
mc

Rhein, Loire, Maas,
Rhone, Seine, Garonne,
Mosel, Marne, …

file://coun-
tries/de.xml

de at, be, ch, cz, dk, fr, lu,
nl, pl

Donau, Elbe, Rhein,
Oder, Weser, Main,
Havel, Mosel, …

file://coun-
tries/it.xml

it at, ch, fr, sm, si, va Drava, Po, Adige, Te-
vere, Adda, Oglio, Ta-
naro, Ticino, ...

A p-faced collection can be filtered by supplying a set of conditions to be tested against the p-faces
of its nodes. Such a set of conditions we call a p-filter. The result of applying a p-filter to a p-faced
collection is a sub collection of the original collection, which we call a p-filtered collection.

A subsequent section will define the syntax and semantics of property filters in detail. For the mo-
ment, assume that such a filter may be represented by a string, and further assume that a p-faced
collection is identified by a URI. Concatenating the URI and the query string, we can then identify
sub collections by a single string, for example:

 http://example.com/pcollections/countries?neighbourCountries=be

A new XPath function may provide the functionality of resolving such strings to the node sequences
they identify. If the model were adopted by the XPath standard, such a function might be fn:no-
des, and one of its signatures might be:

 fn:nodes($uriQuery as xs:string) as node()*

The following snippet shows a simple XQuery program using this function:

 declare variable $country external;
 declare variable $countries := "http://example.com/pcollections/countries";

 <neighbours cy="{$country}">{
 fn:nodes(concat($countries, '?', $country))
 }</neighbours>

A crucial aspect of p-faced collections is the possibility to separate the evaluation of the p-filter
from the construction of the selected nodes. Filter evaluation does not require looking “into” the
candidate nodes, in fact it does not require the construction of any nodes. Filter evaluation is an op-
eration on a collection of logical maps, the p-faces. The p-filter engine may treat the nodes as opa-
que strings, to be delivered as such. Resolving these strings to the nodes they represent is the task of
an independent component, the node builder. The operations of p-filter evaluation and node con-
struction are distinct and independent. It follows that the p-filter engine need not be based on XML
technology. It is possible, for example, to store the p-faced collection in a relational database table

The XML info space

9

and use as p-filter engine the relational database system. In this case, the p-filter supplied to the
fn:nodes function would be translated into a SQL query. It is also possible to store the p-faced
collection in a NOSQL object collection. The p-filter engine would then be the NOSQL data base
system, and the p-filter would be translated into a NOSQL query. Any p-filter engine can be com-
bined with the same node builder, as the mapping of a string to a node is in no way influenced by
the way how the string was obtained.

In summary, p-faced collections promise two distinct benefits. First, they augment the navigational
model of XPath with data-based access to information, overcoming the current limitation that docu-
ment access requires knowledge of the document URI. Second, they offer the possibility to integrate
non-XML technologies into the implementation of XML data storage and XPath navigation, which
may enhance the scalability of XML based systems significantly. The concept of p-faced collections
must now provide

• a model of p-filters in terms of data model, syntax and semantics

• a proposal how to integrate p-faced collections into the XPath language

• an outline how XPath processors may support the implementation of p-faced collections using
non-XML technologies

Filter model
A p-filter defines a condition which can be applied to a p-face and yields a Boolean result. As every
node in a p-faced collection is associated with a p-face, a p-filter can be used to specify sub collec-
tions. This section proposes a generic model of a p-filter, which includes the data model, syntax and
semantics.

Concept

Attempting to strike a balance between simplicity and expressiveness, we constrain a p-filter to con-
sist only of atomic conditions and Boolean conditions. An atomic condition submits the value of one
particular property to a particular test, and a Boolean condition is a Boolean operation (and, or,
not) applied to the results of atomic and/or Boolean conditions. A p-filter can therefore be viewed
as a logical tree with leaves representing atomic conditions and inner nodes representing Boolean
conditions.

Atomic conditions are modelled as comparisons between a property value and a test value. Like the
property value, also the test value is a sequence of atomic items. These items are specified as literal
strings or string patterns – they cannot be references to other property values. The comparison is
defined in terms of an operator (=, <, <=, …) and a quantifier (some or every) specifying if all
property value items or only at least one item must pass the test.

The information content of a p-filter is defined in terms of the XDM data model, namely as an ele-
ment information item constrained in particular ways. The data model must be distinguished from
the syntax model which defines string representations of this information content. The semantics of
a p-filter consist of the rules how to evaluate a p-filter in the context of a p-face to a Boolean result.

The generic p-filter model allows the use of a p-filter engine (for example a particular relational da-
tabase system) which does not support all possibilities implied by the model. To this end, the model
includes the definition of features with implementation-defined values. This approach combines the
precise specification of a fairly rich functionality with conformance criteria based on a subset of the
functionality, and it provides for a standard way how to express implementation-specific limitations.

Data model

A p-filter is an element information item with the local name filter and a namespace URI yet to
be decided. (For the time being we assume the URI http://www.w3.org/2013/xpath-
structures). In the following text we use the prefix p to denote this URI. The filter element is

The XML info space

10

either empty or has element-only content. It can have any number of child elements. Each child ele-
ment represents either a property condition or a Boolean condition.

A property condition specifies a condition referring to a particular property. It is represented by an
element information item in no namespace and with a local name equal to the property name. The
condition can be structured into four logical components, described by the following table.

Table 2.

The components of a property condition and their XML representation.

Condition component XML representationn Explanation
Property name The local name of the element. Note that property names are

constrained to be NCNames. If
this is changed, the property
name will be represented by the
value of a @name attribute.

Test value Either the single text child of
the element, or the p:term
child elements.

If there is only one test value
item, it is represented by the
text content of the element. If
there are several items, use for
each item a p:term child ele-
ment with a single text child.
Note that test value items are
literal – they cannot be referen-
ces to other property values. Al-
so note that test value items
cannot be accompanied by type
information.

Operator Optional @op attribute; default
value: =; valid values: =, !=, <,
<=, >, >=, ~, %, #=, #!=, #<,
#<=, #>, #>=

A leading # indicates a numeric
comparison; ~ is a regex match
governed by the XPath regex
rules; % is a regex or pattern
match with implementation-de-
fined semantics.

Quantifier Option @qua attribute; default
value: some; valid values:
some, every

If the value is every, the con-
dition requires every item of the
property value to meet the con-
dition; otherwise, only at least
one item must meet the condi-
tion.

An additional detail concerns the use of regex matching (@op equal ~). In this case test value items
containing a # are interpreted as follows: the substring preceding the # is the pattern, the substring
following it is a set of match option flags (s, m, x, m, q) as they can be used in the third parameter of
standard function fn:matches.

Some examples of property conditions:

 <time>2013-01-01T00:00:00</time>
 <time op="<">2013-01-01T00:00:00</time>
 <time op="<" qua="every">2013-01-01T00:00:00</time>
 <keywords op="~">^semantic.*</keywords>
 <keywords op="~">^semantic.*#i</keywords>
 <keywords op="~">semantic%</keywords>
 <codes>

The XML info space

11

 <p:item>DUS</p:item>
 <p:item>CGN</p:item>
 </codes

A Boolean condition specifies a Boolean operation applied to the results of other conditions which
are property conditions and/or Boolean conditions. A Boolean condition is an element information
item with a local name equal to and, or or not and the same namespace URI as the p:filter
element. Examples:

 <p:and>
 <time op=">">2012-12-31T22:30:00</time>
 <time op="<">2013-01-01T00:00:00</time>
 <p:or>
 <travelType op="~">^accommodation.*</travelType>
 <supplier>TUI</supplier>
 </p:or>
 <p:not>
 <eventDate op="<" qua="every">2013-08-01</eventDate>
 </p:not>
 </p:and>

Syntax

Being defined as an element information item, a p-filter can be serialized to a string like any other
XML data. However, in certain situations a more compact and intuitive syntax is desirable - for ex-
ample when passing a p-filter to a REST service as part of a URI. Therefore we define a “query
syntax” which represents a p-filter by a non-XML string. The syntax represents a property condition
by these patterns:

 property-name operator testvalue
 property-name operator (testvalueItem-1, testvalueItem-2, ...)

and a Boolean condition by these patterns:

 condition and condition
 condition or condition
 not condition
 not (condition1, condition2, ...)

Parentheses can be used to change the binding of operands to operator (by default: and > or > not).
A non-default quantifier (that is, every) is encoded by a prefix character preceding the operator
string (e.g. $=). Example of a p-filter rendered in query syntax:

 time >= 2012…
 and time <=2013…
 and (travelType ~ ^accommodation.* or supplier=TUI)
 and not(eventData $> 2013-01-01)

Note that this is only a sketch of the intended syntax – a detailed specification is left to future inves-
tigation. In particular it must be decided if test values are quoted.

Semantics

A p-filter can be applied to a p-face in order to obtain a Boolean result. The atomic operation of this
evaluation is the checking of a single property value item against a single test value item. Such a test
is called a comparison constraint. Consequently, the semantics of p-filter evaluation can be divi-

The XML info space

12

ded into general rules and rules governing the evaluation of a comparison constraint. These are the
general rules:

• an empty p-filter evaluates to true

• a non-empty p-filter evaluates to false if at least one child element evaluates to false

• an and condition evaluations to false if at least one child element evaluates to false

• an or condition evaluates to true if at least one child element evaluates to true

• a not condition evaluates to false if at least one child element evaluates to true

• a property condition referencing a missing property evaluates to false

• a property condition with quantifier some evaluates to true if at least one property value item
and at least one test value item meet the comparison constraint

• a property condition with quantifier every evaluates to false if for at least one property value
item there is no test value item with which it meets the comparison constraint

A comparison constraint is specified in terms of an operator. These are the evaluation rules:

• the operators =, !=, <, <= >, >= are evaluated by applying to the operands the corresponding
XPath operator; operands are typed as xs:untypedAtomic

• a comparison operator with a leading # is evaluated by applying to the operands the correspond-
ing XPath operator; operands are converted to xs:double

• the operand ~ is evaluated by evaluating the fn:matches function, using the property value
item as first argument and the regex and options parts of the test value item as second and third
arguments. If the test value item contains a # character, the regex and options parts are the sub-
strings before and after the character; otherwise, the regex part is the complete item and the op-
tions part is the empty string.

• the operator % has implementation-defined matching semantics

New XPath functions
Given a p-faced collection, p-filters can be used to select a sub collection, retaining only those nodes
whose p-face passes the p-filter. This amounts to a logical operation, mapping a collection URI and
a p-filter to a sub collection. New XPath functions can make this operation available. Assuming as a
tentative function name fn:nodes, three variants may be useful:

 fn:nodes($collectionUri as xs:string, p:filter as element(p:filter)) as node()*
 fn:nodes($collectionUri as xs:string, p:filter as xs:string) as node()*
 fn:nodes($filteredCollectionUri as xs:string) as node()*

The second signature expects the p-filter in query syntax (see Syntax). The third signature expects a
string composed of a collection URI and a p-filter in query syntax, separated by a ? character, for
example:

 http://www.traveltainment.de/pfc/shoppingCart?booking-date=2013-08-01

Also when concatenated with the collection URI, the p-filter in query syntax is not URI-encoded.

The introduction of these functions should be accompanied by an extension of the dynamic context
of XPath evaluation: an additional component available property-faced collections provides a
mapping of URIs to property-faced collections. A property-faced collection is formally defined as a
collection which is associated with a mapping of p-filter instances to sub collections

The XML info space

13

Exposure by REST-ful web services
A p-faced collection can be exposed as a REST-full web service, using as URI the concatenation of
collection URI and (URI-encoded) p-filter described in the previous section. As a web service is ex-
pected to return a single document, rather than a sequence of nodes, the selected sub collection may
be wrapped by an element and thus integrated into a single document. The proposed convention is to
use a <p:collection> element with two attributes providing the collection URI and the (not
URI-encoded) p-filter. Example:

 <p:collection uri="http://www.traveltainment.de/pfc/offers" p-filter="destination=PMI"
 xmlns="http://www.traveltainment.de/pfc/offers"
 xmlns:p="http://www.w3.org/2013/xpath-structures">
 <offer>...</offer>
 <offer>...</offer>
 <offer>...</offer>
 </p:collection>

Deployed and external collections
An XPath processor may provide access to two different groups of p-faced collections:

• deployed collections

• external collections

A deployed collection is accessed according to configuration data. This might, for example, involve
the translation of the p-filter into a SQL query, its execution and the construction of nodes from re-
sult set data. See Implementation and configuration for details about the deployment of p-faced col-
lection.

An external collection is accessed by applying the fn:doc function to a URI which is a concatena-
tion of collection URI and (URI-encoded) p-filter in query syntax. The URI is expected to yield a
document which represents the selected nodes as child elements of the document element (see Expo-
sure as REST-ful web services)). The fn:nodes function might operate as follows:

• if the collection URI identifies a deployed collection – evaluate the selection in accordance with
the configuration data

• otherwise – construct a URI concatenating the collection URI and the p-filter, resolve this URI to
a document and deliver the child nodes of the document element

Implementation and configuration
A crucial aspect of p-faced collections is that they may be implemented using non-XML technolo-
gies, namely relational database tables and NOSQL object collections. This follows from the fact
that the node itself is represented by a string and that it is not inspected during the filtering opera-
tion. Consequently, the implementation of a p-faced collection is not dealing with any tree structure.
The implementation must provide for each node the representation of a logical map in which one
entry represents the node itself and the remaining entries represent the names and values of proper-
ties. Configuration data include the name of the entry representing the node and specify how the
node (if selected) is constructed from the string representing it. The string may be a serialization of
the node, or it may consist of locator information, either a regular URI or a locator with implementa-
tion-defined semantics.

If the p-faced collection is “homogeneous” in the sense of every node having the same external
properties, a relational table is a straightforward choice. If the nodes have different sets of proper-
ties, a NOSQL collection may be more appropriate. An example for the latter case are log data,
where each log entry has some generic properties including an event type and further properties
which are event type-specific. An event of type “file-not-found” may have a property “file-name”,

The XML info space

14

whereas an event “container-delivered” may have properties specifying a container-number and a
location.

Configuration data are required in order to enable an XPath processor to access the implementation
of a p-faced collection:

• the collection URI

• the implementation technology, implying the backend query language to use

• connection data (e.g. database name and credentials and a database table name, or the name of an
object collection)

• the type of node representation (serialized node, or URI, or an implementation-defined kind of
locator)

Collection features
The model of a p-filter includes details which may not be well supported by a particular technology
which on the whole seems well-suited to implement p-faced collections. For example, the used tech-
nology may not support …

• the regular expression dialect used by XPath

• case-sensitive property names

• case-sensitive property values

• property values with multiple items

• searches requiring all property value items to meet a condition

Two perspectives must be distinguished:

• the collection provider – using a particular implementation technology, his choices of property
names and values may be limited

• the collection user – certain aspects of selection may not be supported

Defining the integration of p-faced collections into XPath, only the second perspective is relevant,
as it impacts the semantics of XPath expressions. The first perspective may affect the names and
values of properties, but not the syntax and semantics of XPath expressions. Such limitations are
hidden from the collection user by the actual use of property names and values. For example, if the
technology excludes multiple property values, the collection simply does not use multiple-valued
properties; or if the technology does not support case-sensitive property names or values, the collec-
tion arbitrarily defines all property names to be lower case (or upper case).

The concept of collection features is introduced in order to enable a standardized representation of
limitations, and to enable a definition of conformance which can be achieved in spite of limited sup-
port of the p-filter model. The following table presents a tentative set of collection features.

Table 3.

Collection features.

Collection feature Description Remark
{operators} A list of supported operators.

The list must contain the “=”
A p-filter must not use an oper-
ator not contained in {opera-
tors}.

The XML info space

15

Collection feature Description Remark
operator, all other operators are
optional.

{every-supported} If false, a p-filter must not
contain the every quantifier.

Every implementation must
support the some quantifier.

{multiple-test-supported} If false, a p-filter must not
specify test values with multiple
items.

The use of multiple test values
can be emulated using p:or.

Pushing the boundaries of the info space
The boundaries of the info space distinguish resources that belong to the space from resources that
do not belong to the space. A resource is excluded from the info space for one of these reasons:

• Physical inaccessibility

• API-based inaccessibility

• Media type-based inaccessibility

Physical access is out of scope. API-based inaccessibility is a target for extensions of the XPath
function library. Media type-based inaccessibility presently amounts to the simple rule: XML re-
sources are within, non-XML resources are not within the space. This is the basic weakness of the
info space seen as an information architecture, and it is arguably the greatest challenge for a well-
guided evolution of XML. Accordingly, this paper concentrates on the media type boundary and
limits itself to a couple of notes concerning the API-based boundary.

The API-based boundary can be shifted by the introduction of new standard functions for accessing
XML documents which are presently not accessible using fn:doc. These functions might address:

• Documents requiring HTTP authorization

• Documents requiring special HTTP header settings

• Documents requiring the HTTP POST method

• Documents within archives (e.g. zip)

Conceivable signatures would be (informally, for the sake of brevity):

 httpDoc($uri, $username, $password, $headerFields, $body) as document-node()
 zipDocs($uri, $directories, $namePatterns) as document-node()*

Model oriented resource representation
The most critical limitation of the info space is its commitment to the XML media type. The most
important extension of the space can be achieved by overcoming this limitation.

An integration of non-XML resources into the info space is enabled by a consistent distinction be-
tween information and representation: between model and format. The basic principle of XML tech-
nology might be applied to non-XML resources: information is an instance of the data model. The
info space can be extended by redefining non-XML formats to be representations of XDM node
trees.

A format defined to represent node trees might be called a model oriented resource representa-
tion: a resource is viewed as a unit of information which is captured by a model instance, and this
instance is represented by the format. The format instance is an expression, the model instance its
value.

The XML info space

16

Introductory example
Scenario: we want to check some country codes, we have access to a dictionary of country codes
and names, but this dictionary is represented by a CSV dataset.

Now let us assume there is a standardized XML vocabulary for table data, comprising "table", "row"
and "cell" elements. And we further assume the existence of a new fn:doc variant which delivers
CSV data as an XML node tree based on the table vocabulary. It enables us to select all invalid
country codes by a simple expression:

 doc("foo.xml")//countryCode
 [not(. = doc("countries.csv", "csv")//row/cell[1])]

This example demonstrates a seamless integration of data from XML and non-XML resources: both
participate in the info space.

A generic pattern of integration
Let us assume that for a given data format F three sets of rules have been defined:

R1 Rules how to map an instance of F to a node tree

R2 Rules how to map a node tree to an instance of F

R3 Rules how to decide whether a given node tree can or cannot be mapped to an instance of F

And let us further assume that these rules satisfy two conditions:

C1 For any format instance G: R1(G) satisfies R3

C2 For any R3-conformant node tree N: R1(R2(N)) is deep-equal to N

where R1(G) denotes the result of applying R1 to a format instance G and R2(N) denotes the re-
sult of applying R2 to a node tree N.

C1 and C2 imply a constraint concerning round-tripping which starts with a format instance G: the
result is a format instance G' which is not necessarily equal G but which is "FORMAT-deep-equal":
R1(G) is deep-equal R1(G'). This amounts to defining the information content of a format instance
G: it is the node tree provided by R1. Relying on this definition of information content, instances of
F can be safely evaluated or modified by evaluating or modifying the corresponding node tree. This
is the foundation of an integration of format F into the info space.

A normative definition of rule sets R1, R2 and R3 enables the standardized integration of a non-
XML format into the info space. This requires two extensions of the XML standards. The first ex-
tension is an XPath function which parses an instance of the format into a node tree, reflecting R1.
The second change extends the XML serialization model [5] by the definition of a serialization to
format F, reflecting R2 and R3. The interface of serialization is accordingly extended by an addi-
tional value of the serialization parameter model.

A concrete proposal for the required XPath function is the introduction of a second variant of
fn:doc which has an additional parameter specifying the source data format:

 fn:doc($uri as xs:string, $mediaType as xs:string) as document-node()

Assuming that rule sets have been standardized for the formats HTML, JSON, CSV, SQL and CSS,
access to non-XML resources might look like this:

 fn:doc("http://example.com/foo.htm", "htm")
 fn:doc("http://example.com/foo.jsn", "jsn")
 fn:doc("http://example.com/foo.csv", "csv")

The XML info space

17

 fn:doc("http://example.com/foo.sql", "sql")
 fn:doc("http://example.com/foo.css", "css")

The following sections explore how the rule sets govering parsing and serialization may be defined.

Vocabulary based integration
Domain-specific languages (like SQL) and non-recursive generic formats (like CSV) may be repre-
sented by a particular XML vocabulary. The formal definition of such a vocabulary might comprise
an XSD and a (possibly empty) set of additional constraints expressible as XPath assertions. As a
simple example, the vocabulary for representing CSV data might be defined as a schema containing
element declarations with names like "table", "row" and "cell" as well as type definitions constrain-
ing a table element to have only row children and row elements to have only cell children. An
additional constraint might prescribe that every row element has the same number of cell children:

 count(distinct-values(//row/count(cell))) eq 1

As a second example, an SQL vocabulary might contain a specific element for each SQL statement,
with a content model designed to capture all information which the SQL syntax may convey.

Wiki dialects are non-XML formats representing a node vocabulary (XHTML). The motivation is of
course not integration into the info space, but access to a rendering processor. And here a format
was added to an existing node vocabulary, whereas integration adds a node vocabulary to an exist-
ing format. Nevertheless, it is interesting to notice the popularity which a non-XML/HTML repre-
sentation of node trees can attain. Standardization work might take this phenomenon into considera-
tion.

Vocabulary-assisted integration
Vocabulary-based integration is natural for formats which do not themselves generate vocabularies
as JSON does. Such a generative format might in principle be mapped to a fixed XML vocabulary,
by mapping the names supplied by the format instance to XML data, rather than to XML names.
However, if the format has a recursive structure – like JSON – the resulting XML would look un-
natural and be inconvenient to evaluate. Such a mapping would have very limited practical value,
and it would violate the concept of integration as explained in a generic pattern of integration. The
concept is based on regarding non-XML formats as alternative representations of node trees, as if
the node trees were the original information and the format were a means to capture this informa-
tion. If the node tree looks unnatural, the image presupposes the desire to convey information which
is unnaturally structured in the first place, which is absurd.

If JSON is redefined to be the representation of node trees, these node trees should probably capture
JSON names by node names. Several approaches of mapping JSON to XML have done that as far as
possible (e.g. [7], [12], [13], [14], [16]) but they could not achieve two goals:

• Represent any JSON name by an equal node name

• Renounce the use of XML nodes containing JSON-related control information

The first problem arises from the fact that XML names are QNames. The second problem reflects a
mismatch of data models: whereas JSON uses two distinct content models, one a map and the other
a sequence of anonymous items, XML has a single content model which is sequence-and-name
based. The XML model can be used to emulate the JSON models, but it cannot express them native-
ly. Those mapping approaches might be classified as vocabulary-assisted: the bulk of items is
named after their JSON counterparts, but a small additional vocabulary is used in order to specify
relationships between the nodes and their JSON counterparts. These additional items prevent an
evaluation of the node tree from ignoring representations and only seeing the node tree itself.

The XML info space

18

Native integration
JSON is, like XML, recursively defined and generates vocabularies. The ideal way to integrate it
into the info space would be native integration: every JSON instance should be the representation of
a node tree which natively expresses the JSON content, so that it can be serialized to JSON based on
the node properties only, without requiring the presence of additional nodes guiding the serializa-
tion. Native integration of JSON is not possible due to differences of the XML and JSON data mod-
els: the XML model is not a superset of the JSON model.

The extension of XML
JSON is a very popular generic markup language. If the XML data model is not a superset of the
JSON model, it must be questioned if the XML data model is qualified to define the info space - an
information architecture not tied to a particular markup language. The XML data model is very ex-
pressive and allows representing virtually any tree-structured data as long as each node cannot have
more than one parent. But in three cases (at least) a given structure must be emulated, rather than be
expressed natively. Calling the data to be represented a source tree composed of nodes, these are:

1. If a source node has a name which is not a valid QName, the XML node has a different name.

2. If a source node is anonymous, the XML node must nevertheless have a name.

3. If a source node has unordered content, the XML node cannot avoid adding the information of a
particular order – the data model does not allow “switching off” the meaningfulness of order.

The emulation may deal with arbitrary names either by mapping the original name to an NCName or
by shifting the source name into data (e.g. an attribute). Anonymous nodes can be represented by
nodes with an arbitrary name. The insignificance of order can be conveyed by out-of-band informa-
tion. As long as one can start and end with XML, these workarounds are not perceived as serious
issues. Likewise, as long as an initial JSON representation can be permanently replaced by XML,
there is also no problem as the emulation provides semantic equivalence. But if there is a need to
maintain a relationship between node tree and JSON representation, one discovers that there is no
way to natively express arbitrary JSON data by an XML node tree.

(2) and (3) amount to a mismatch between XML and the dominant content model used in program-
ming languages: which is a choice between sequence-based (an "array" of anonymous items) and
key-based content ("map", "hash", etc.: an unordered collection of keyed items). XML has one sin-
gle content model which is a curious hybrid: sequence+name based, which means the content is al-
ways ordered (array-like), but each sequence item has a name, which is key-like but not a key, as it
is not required to be unique among the siblings.

The fact that virtually any tree-structured information can be emulated in XML has encouraged the
view that the content model is sufficient. The fact that the content model is not as generic as it seems
on first sight – that it is incapable of expressing natively arrays, maps and string-based names – has
not yet caught much attention. This might change if the concept of an info space gains momentum.
The concept implies a certain shift of priorities, attaching importance to a native representation of
non-XML resources by the XML data model. Such a representation is required for seamless naviga-
tion: navigation which sees the information content (the model instance) and is unaware of future or
past representations.

Extension of the XML data model
Rennau [17] proposed an extension of the XML data model which claims to enable a native repre-
sentation of JSON data. The proposal introduces the same boolean choice of content organization as
is used in common programming language like Java: a choice between the sequence based model
(which is the only model in current XML) and an alternative model which is truly map-based: the
child elements are unordered, and every child element has a string-typed key – which is a new node
property, [key]. The choice between the two content models is made by each complex element, and

The XML info space

19

therefore it is modeled as a second new node property, [model]. It has two values, "sequence" and
"map", and the relationship between the two new properties is constrained as follows: (a) an element
with a non-null [key] must have a parent element with [model] equal "map"; (b) an element with a
null [key] must not have a parent element with [model] equal "map". In other words: "map" ele-
ments have unordered children which must have keys, and "sequence" elements have ordered chil-
dren which must not have keys.

Concerning the handling of anonymous items, Rennau proposed the introduction of "unspecific
standard names", but this is unsatisfactory, as it renounces the goal of a genuinely native representa-
tion: the only natural representation of an anonymous item is an anonymous item. Therefore we
should modify the XML data model by allowing anonymous elements. A JSON array would thus be
an elegant representation of an element node with [model] equal "sequence" and anonymous child
elements.

In summary, the following extensions of the XML data model should be considered, as they promise
to overcome the limitations which disqualify the model as foundation of the info space: (a) addition
of two new node properties, [model] and [key]; (b) modification of the property [node-name], intro-
ducing the possibility of a null value.

Extension of the XML syntax
Introducing new node properties implies the necessity to define the representation of these proper-
ties in XML syntax. Rennau proposed the use of "pseudo attributes" which look like attributes but
do not represent attribute nodes, as they represent node properties:

• udl:model - indicates the value of the [model] property

• udl:key - indicates the value of the [key] property

where the prefix "udl" stands for "unified document language". As a consequence, however, the
XML representation of a JSON instance tends to be cluttered with pseudo-attributes, which is per-
haps a less important disadvantage as it may seem, as the processing of JSON-supplied data is as
elegant as the processing of XML-supplied data (see below, Extension of the XPath/XQuery lan-
guage) and the very info space architecture encourages the use of JSON notation whereever it seems
more attractive than XML notation (see below, Markup integration) .

However, a refusal to express the new node properties with the same immediateness as the other
properties is unsatisfactory. Pseudo-attributes are an adequate representation of a node property
when they can be expected to be rare, as for example xml:type attributes. However, knowing in
advance that the XML representation of JSON-supplied data will produce XML documents which
are studded with pseudo-attributes - rendering them hardly readable - we are motivated to go a step
further and truly extend the XML syntax, introducing new syntax constructs. The goal is to ensure
readable XML representations also of such node trees as are constructed from JSON instances. The
following syntax extensions should therefore be considered:

• A special character preceding an element name indicates that its [model] is "map", rather than
"sequence". Example: <~foo>

• The key can be expressed within the element tag by the quoted key value. Example: <foo
"2012">

• Anonymous elements which do not have a key use instead of an element name a special charac-
ter. Example: <*>

• Anonymous elements which do have a key are represented by shifting the quoted key value to the
beginning of the tag. Example: <"2012">

These rules would allow an acceptable representation of JSON data in XML syntax. A special ad-
vantage is that a given information content – e.g. a web service response – might then be served
without changes alternatively in JSON or XML. Example:

The XML info space

20

 <~getWeatherResponse>
 <"temperature min">28</"temperature min">
 <"temperature max">32</"temperature max">
 </~getWeatherResponse>

 {
 "temperature min" : 28,
 "temperature max" : 32
 }

To round these considerations off, a further detail of Rennau's proposal which concerns the XML
syntax should be retained: for elements which have a parent element with [model] equal "map", the
key defaults to the local name. Therefore, a slight modification of the above example would look
like this:

 <~getWeatherResponse>
 <temperatureMin>28</temperatureMin>
 <temperatureMax>32</temperatureMax>
 </~getWeatherResponse>

In this variant the child elements are not any more anonymous but have a local name equal to the
key.

Extension of the XPath/XQuery language
Integration of non-XML resources into the info space is driven by the desire to make them accessi-
ble to navigation and evaluation. The extension of the data model by a new [key] property must
therefore be mirrored by an extension of the XPath semantics. Rennau proposed the introduction of
a third node test, the "key test" which functions in analogy to the name test: selecting elements with
a given key, rather than elements with a given name. Being a node test, the key test is combined
with navigational axes in the same way as a name test. The syntax of a key test is a special character
(proposed: "#") followed by the key value within quotes. Examples:

 $response/#"temperature min"
 $response//#"2012"
 $item/ancestor-or-self::#"AC#A-2917"

Thanks to the key test, JSON-supplied data can be navigated with the same ease as XML-supplied
data, using key tests to select among object members and conventional numerical predicates to se-
lect among array items:

 $response//#"weather"/#"temperatures"/*[3]

Whereas the key test provides for navigation, Rennau also proposed an extension of XQuery which
enables the construction of nodes using JSON syntax. The extension is purely syntactical: an addi-
tional syntax which is a JSON-style shorthand notation for the construction of nodes which, due to
their properties, correspond to JSON objects and arrays. For example, the following XQuery con-
structor:

 <*>
 <"temperature min">{$min}</"temperature min">
 <"temperature max">{$max}</"temperature max">
 <"temperatures">{for $v in $values return <*>{$v}</*>}</"temperatures">
 </*>

can equivalently be written using JSON syntax:

 {
 "temperature min" : $min,
 "temperature max" : $max,

The XML info space

21

 "temperatures" : [$values]
 }

The XQuery construction of JSON data using JSON syntax is as convenient as the construction of
XML data using XML syntax. Taken together, the proposed extensions of XPath and XQuery en-
sure a complete integration of JSON into the info space:

• JSON instances can be navigated as easily as any other node trees.

• JSON instances can be constructed using JSON syntax.

Markup integration
Every syntax which is defined to be the representation of a node tree might be integrated into XML
markup. Provided that any section using non-XML syntax

• identifies the syntax it uses

• is clearly delimited

• appears in a place where a sequence of elements might appear

the document text is guaranteed to be parsable into a node tree in an unambiguous way. Rennau pro-
posed a restricted use of this new possibility which allows to provide element contents in non-XML
syntax. The proposal is to introduce a pseudo-attribute (udl:markup) which identifies the syntax
used to encode the element content. As a consequence, the following text would be a valid XML
document:

 <~getWeatherResponse udl:markup="json">
 "temperature min" : 28,
 "temperature max" : 32
 "temperatures" : [28, 28, 30, 32, 31]
 </~getWeatherResponse>

Note that the getWeatherResponse element has three child elements, as the content of an ele-
ment with udl:markup='...' is defined to be the nodes resulting from parsing the text found
between start tag and end tag according to the parsing rules for format '...'.

Wrapping up
The info space is an information architecture consisting of distributed resources whose information
content is defined to be a node tree, understood as an instance of the (slightly extended) XDM data
model. The resources are identified by URIs and accessed by XPath functions (fn:doc,
fn:httpDoc, ...) which hide the actual data formats and expose the node structure. Taken togeth-
er, the node structure of all accessible resources provides a uniform substrate for navigation and dis-
covery.

It should be noted that the concept of a "resource" as used in the info space model is different from
the use in Fielding's REST model [11]. The latter defines a resource as a conceptual unit whose
mapping to concrete representations is a function of time. The resources of the info space are units
of information which are values, precisely defined in terms of a node tree. As such, they are more
closely related to Fielding's concept of a resource representation than to his concept of a resource.
On the other hand, the insistence on a well-defined information content is in sharp contrast with
Fielding's model, in which there is no place for such a thing. Resources of the info space are the
accessible resource representations (in Fielding's sense) which can be resolved to a node tree. As
such, the info space is a snapshot of all accessible resource representations (in Fielding's sense)
which have a media type defined to represent a node tree, according to the standardizations endorsed
by the W3C.

The XML info space

22

Fielding's REST model is aimed at an architecture for the internet, understood as a distributed hy-
permedia system. His view of resource navigation assumes a model of application behaviour in
which the rendering of resource representations powers subsequent navigation by supplying embed-
ded links. The info space model, on the other hand, is unconcerned with application behaviour and
paints a picture in which nothing appears but information, aggregated into distinct resources and
nevertheless coalesced into a single, homogeneous substrate of information. Embedded links are
predefined point-to-point connections. The connectivity of the info space, however, relies on XPath
navigation, which is like an ubiquitous field of possibility, potentially leading from anywhere to
anywhere. Therefore the info space is not a net but more like a space: it integrates anything (any
resource) appearing within it.

The info space integrates information on a global scale, relying on a uniform data model. The same
can be said about RDF [15]. What is the relationship between the XML info space and RDF? RDF
is about semantic integration, establishing the identities of real world resources described by the da-
ta. The RDF data model is designed to enable the assembling of distributed items into synthetic de-
scriptions, which are organized by the identities of the described resources.

The XML info space, on the other hand, is about navigational integration, offering it as a possible
foundation for semantic integration. The semantic integration is left to applications which are sup-
posed to understand the trees they are dealing with as a coherent, structured unit - rather than regard-
ing them as a "mine" from which to undig self-contained items of information (triples). Such a deal-
ing with well-understood resources is the typical task of conventional applications. They know what
to do with, say, /a/b/c taken from one resource and with /x/y/z taken from another resource, and how
they are related. For such applications the benefit of simple and efficient navigation is probably
greater than the benefit of further aids how to find out those meanings and relationships. Therefore
conventional applications may profit from the navigational info space immensely and probably far
less from the semantic space created by RDF. Nevertheless, there may be a wonderful synergy be-
tween the XML space and the RDF space yet to be explored.

Bibliography
[1] Berglund, Anders et al, eds. XML Path Language (XPath) 2.0 (Second Edition). W3C Recommendation 14

November 2010. http://www.w3.org/TR/xpath20/

[2] Berglund, Anders et al, eds. XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition). W3C Recom-
mendation 23 January 2007. http://www.w3.org/TR/xpath-datamodel/

[3] Berners-Lee, Tim et al. Uniform Resource Identifier (URI): Generic Syntax. Network Working Group, Re-
quest for Comments: 3986. January 2005. http://tools.ietf.org/html/rfc3986

[4] Boag, Scott et al, eds. XQuery 1.0: An XML Query Language (Second Edition). W3C Recommendation 14
December 2010. http://www.w3.org/TR/xquery/

[5] Boag, Scott et al, eds. XSLT 2.0 and XQuery 1.0 Serialization (Second Edition). W3C Recommendation 14
December 2010. http://www.w3.org/TR/xslt-xquery-serialization/

[6] Bray, Tim et al, eds. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation 26
November 2008. http://www.w3.org/TR/REC-xml/

[7] Couthures, Alain. JSON for XForms - adding JSON support in XForms data instances. XML Prague 2011,
Conference Proceedings, p. 13-24. http://www.xmlprague.cz/2011/files/xmlprague-2011-
proceedings.pdf .

[8] Cowan, John & Tobin R., eds. XML Information Set (Second Edition). W3C Recommendation 4 February
2004. http://www.w3.org/TR/xml-infoset/

[9] DeRose, Steve et al, eds. XML Linking Language (XLink) Version 1.1. W3C Recommendation 6 May 2010.
http://www.w3.org/TR/xlink11/

The XML info space

23

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath-datamodel/
http://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/REC-xml/
http://www.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf
http://www.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xlink11/

[10] Einstein, Albert & Infield, L. The evolution of physics. Edited by C.P. Snow. Cambridge University Press,
ASIN: B000S52QZ4, 1938 http://archive.org/details/evolutionofphysi033254mbp .

[11] Fielding, Roy T. Architectural Styles and the Design of Network-based Software Architectures. Ph.D. Dis-
sertation, University of California, Irvine, 2000. http://www.ics.uci.edu/~fielding/pubs/dissertation/
top.htm .

[12] Gruen, Christian, et al. BaseX Documentation Version 7.3, section "JSON Module", p. 161-166. http://
docs.basex.org/wiki/Main_Page.

[13] Hunter, Jason. A JSON facade on MarkLogic Server. XML Prague 2011, Conference Proceedings, p.
25-34. http://www.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf.

[14] Lee, David A. JXON: an Architecture for Schema and Annotation Driven JSON/XML Bidirectional Trans-
formations. Presented at Balisage: The Markup Conference 2011, Montréal, Canada, August 2 - 5,
2011. In Proceedings of Balisage: The Markup Conference 2011. Balisage Series on Markup Technolo-
gies, vol. 7 (2011). doi:10.4242/BalisageVol7.Lee01. http://www.balisage.net/Proceedings/vol7/html/
Lee01/BalisageVol7-Lee01.html.

[15] Manola, Frank & Miller E., eds. RDF Primer. W3C Recommendation 10 February 2004. http://
www.w3.org/TR/rdf-primer/

[16] Pemberton, Steven. Treating JSON as a subset of XML. XML Prague 2012, Conference Proceedings, p.
81-90. http://www.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf.

[17] Rennau, Hans-Jürgen. "From XML to UDL: a unified document language, supporting multiple markup lan-
guages." Presented at Balisage: The Markup Conference 2012, Montréal, Canada, August 7 - 10, 2012.
In Proceedings of Balisage: The Markup Conference 2012. Balisage Series on Markup Technologies,
vol. 8 (2012). doi:10.4242/BalisageVol8.Rennau01. http://www.balisage.net/Proceedings/vol8/html/
Rennau01/BalisageVol8-Rennau01.html.

[18] Walsh, Norman, ed. XML Catalogs. OASIS Standard V1.1, 7 October 2005. https://www.oasis-open.org/
committees/download.php/14809/xml-catalogs.html.

[19] Web resource without source information: Introducing JSON. http://json.org.

The XML info space

24

http://archive.org/details/evolutionofphysi033254mbp
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://docs.basex.org/wiki/Main_Page
http://docs.basex.org/wiki/Main_Page
http://www.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf
http://www.balisage.net/Proceedings/vol7/html/Lee01/BalisageVol7-Lee01.html
http://www.balisage.net/Proceedings/vol7/html/Lee01/BalisageVol7-Lee01.html
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
http://www.balisage.net/Proceedings/vol8/html/Rennau01/BalisageVol8-Rennau01.html
http://www.balisage.net/Proceedings/vol8/html/Rennau01/BalisageVol8-Rennau01.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://json.org

	The XML info space
	Table of Contents
	Introduction
	Experiments and observations
	Experiments
	Observations

	The XML info space
	The definition
	The limitations
	The boundaries

	Addressing the limitations of the info space
	XLink per XPath
	XLink versus data-driven navigation
	Property-faced collections
	External node properties
	Property-faced collections
	Filter model
	Concept
	Data model
	Syntax
	Semantics

	New XPath functions
	Exposure by REST-ful web services
	Deployed and external collections
	Implementation and configuration
	Collection features

	Pushing the boundaries of the info space
	Model oriented resource representation
	Introductory example
	A generic pattern of integration
	Vocabulary based integration
	Vocabulary-assisted integration
	Native integration

	The extension of XML
	Extension of the XML data model
	Extension of the XML syntax
	Extension of the XPath/XQuery language

	Markup integration

	Wrapping up
	Bibliography

