
XQuery as a data integration
language

Hans-Jürgen Rennau, parsQube GmbH
<hans-juergen.rennau@parsqube.de>

Christian Grün, BaseX GmbH <christian.gruen@gmail.com>
Abstract

The appropriateness of the XQuery language for data integration is explored. The starting point is an
assessment of integration capabilities in an XML-only environment. The next step is an evaluation of the
degree to which one may extend these capabilities to heterogeneous environments with multiple media types
and various data access protocols. This leads to the identification of a key challenge, which is the structured
representation of non-XML data formats by items of the XQuery data model. The current support for such
representation is reviewed, and a conceptual base is proposed for modeling the relationship between data model
items and instances of non-XML formats. As special facets of data integration, the roles of REST and RDF in
XQuery-based integration are discussed, and general limitations of XQuery as an integration language are
acknowledged.

Table of Contents
Introduction .. 2
XQuery, seen from the outside .. 2
Basic facts about XQuery ... 2

XQuery as an information oriented language .. 2
XQuery as an aggregation-friendly language .. 2
Expanding scope of resource access ... 3

The integration of XML data .. 3
Finding information ... 3
Constructing information .. 6
Resource exploration .. 9
Resource validation .. 11

Resource access ... 13
Introduction .. 13
Resource access patterns ... 13
Scopes of availability ... 14
Resource access functions ... 14
Standard versus extension functions .. 16

XDM binding ... 16
Introduction .. 16
XDM binding, XDM equality .. 16
XML binding .. 18

The role of REST .. 20
XQuery and RDF .. 20

RDF and data integration .. 20
XQuery and SPARQL .. 21
XQuery as a triple factory ... 21

Integration issues ... 25
Issue: the snapshot model ... 25
Issue: scaling problems ... 25

XQuery as a data integration language - conclusions .. 26
A. Triple set construction expressions ... 26

1

XQuery as a data
integration language

Bibliography ... 28

Introduction
Speaking of data integration, we presuppose scenarios where information is distributed over several
resources. These may have the same media type - e.g. XML, JSON or CSV - or different media types.
Concerning the access protocol, they may be provided by the same platform – e.g. file system, a
particular database system, or HTTP GET – or by several platforms. Every general purpose language
(Java, C#, Python, Perl, …) has various APIs for accessing resources exposed on different platforms
and using different media types. Therefore any general purpose language can be used in order to
accomplish tasks of data integration. So why should one assign to a particular language the quality of
being a “data integration language”?

The key aspect is simplicity. A language particularly well-suited for data integration enables
particularly simple solutions for typical operations of data integration. In a nutshell, it enables
simplicity when dealing with multiplicity and heterogeneity. We shall investigate the degree to which
XQuery ([14]) matches this requirement. The question is relevant to the potential role which XQuery
may play in common IT landscapes. The answers may change basic views of the XQuery language:
its main purpose, its scope and the course of its further voyage. If the potential for data integration is
large, extended support for data integration should be a major goal when defining future versions of
XQuery as a standard, as well as new versions of XQuery processors as products.

XQuery, seen from the outside
Many people are interested in data integration, but in this context we are not aware of any particular
attention paid to XQuery. The prevalent feeling seems to be that XQuery is a specialized language for
extracting content from XML documents. Interest in such functionality is greatly reduced by the fact
that in many environments XML documents are not dealt with directly, as they are hidden by tools
and technologies. For example, many web services (REST and SOAP) consume and produce XML,
but developers of client and server applications usually deal with objects (e.g. JAXB objects), rather
than the message documents themselves. As a consequence, XQuery has the status of a niche language
offering support for uncommon tasks.

Basic facts about XQuery
Data integration is concerned with the selection of information from multiple and heterogeneous
resources, combining and transforming it into new information, which is either delivered to receiving
software components or stored in multiple and heterogeneous resources. These requirements should
be used as a backdrop when considering a few basic facts about XQuery.

XQuery as an information oriented language
• XQuery is a language focused on the expression of information in both ways – as a selection of

existent information, and as a construction of new information

• Selection and construction of information are key operations of data integration

XQuery as an aggregation-friendly language
• The data model is built on the key abstraction of an item sequence, rather than on a single item

• As a consequence, many operations can be applied to an item sequence, rather than only to an
individual item; in particular, path expressions can be applied to any number of input documents
“simultaneously”

• Aggregated processing of sets of resources is a key operation of data integration

2

XQuery as a data
integration language

Expanding scope of resource access
• XQuery 1.0 restricted resource access to XML resources identified via a single URI (in practice:

files, XML database entries and documents retrievable via HTTP GET and ftp)

• XQuery 3.0 enables the reading of text resources

• XQuery 3.1 enables the parsing of JSON text into a structured representation

• Vendor-specific extension functions extend the scope of resource access further (parsing CSV,
reading the contents of archives, access to SQL and NoSQL databases, support for HTTP POST
messages, …)

• Access to multiple data platforms and media types is a precondition of data integration

The integration of XML data
The current section focuses on a scenario in which all relevant resources are XML documents. This
setting hides the specific challenges of processing non-XML data with an XML-centric language, as
well as the general challenges of dealing with heterogeneous data formats. Our goal is to highlight the
ability of XQuery to deal with structured information distributed over several resources. The possibility
of keeping these abilities in a more general context - when dealing with non-XML data and multiple
formats - will be explored afterwards (the section called “Resource access” and the section called
“XDM binding”).

Independently of the media types involved, several operations tend to be important in the context of
data integration:

• Finding information

• Constructing information

• Resource exploration - gathering information about unknown or little known resources

• Resource validation - assessing the conformance of resources to expectations

Finding information
Before data can be integrated, they must be found and selectively addressed.

The XPath navigation model
XQuery is built around the XPath navigation model, which represents the selection of information
contained by XML documents as a traversal of tree-structured information. An XML document is
modelled as a tree of nodes, which represent the elements, their text content and their attributes. The
traversal is accomplished by a single or several steps, where each step expresses a selection of nodes,
and each non-initial step maps the preceding selection to a new selection. In the common case of axis
steps, the selection of items consists in the combined operations of mapping and filtering: mapping
each node of the previous selection to all nodes found in a particular structural relationship – e.g. being
child nodes or descendant nodes – and filtering them by name or node kind and optionally by further
criteria. For example, the following expression

 /descendant::booking/flight[cabinClass= 'economy']/arrival/@airport

is a traversal which

• starts at the root of an XML document containing the current context item

• moves on to all descendant nodes, filtered by name which must be equal to “booking”

3

XQuery as a data
integration language

• moves on to all child nodes, filtered by name which must be equal to “flight” and by the additional
condition that the node must have a child element with a name equal to “cabinClass” and a text
content equal to the string “economy”

• moves on to all child nodes, filtered by name which must be equal to “arrival”

• moves on to all "airport" attributes found on one of the “arrival” elements reached by the previous
step

Note the conciseness: a single expression specifies a very complex selection of information. Also
note the simplicity of the expression - it allows an intuitive understanding which approaches the
exact semantics rather closely. Of special interest in the context of data integration is the fact that the
complexity of the involved documents is hidden: the expression assumes the existence of four sets of
items found in a particular structural relationship to each other, and apart from that it does not assume
any details about the document being traversed, like the number of hierarchical levels and the names
of any elements and attributes not used as selection criteria. The XPath navigation model uncouples
the complexity of selection from the complexity of the documents to which the selection is applied,
and this may simplify the tasks of data integration significantly.

Bulk navigation
Although navigation is often applied to single documents, it is not constrained to such local usage.
The steps of a path are not necessarily axis steps (as in the previous example), but can be arbitrary
expressions, provided they yield only nodes (in the case of a non-terminal step) or either only nodes or
only atomic values (in the case of a terminal step). In particular, a step may produce nodes contained
by several documents. For example, the expression

 $msgs/descendant::booking/flight[cabinClass='economy']/arrival/@airport

applies a complex navigation to all nodes bound to the variable $msgs. Similarly, the expression

 (doc('msg1.xml'), doc('msg2.xml'), doc('msg3.xml'))/descendant::booking

extracts elements from three documents returned by the first step of the path expression.

A general pattern for bulk navigation consists in streaming a sequence of URI values into a path
expression whose first step is a doc() function call applied to the context item:

 UFACTORY ! doc(.)/STEPS

where UFACTORY is an expression returning a sequence of URIs and STEPS is a path expression.
Some examples:

 tokenize('msg1.xml msg2.xml msg3.xml') ! doc(.)/descendant::booking
 unparsed-text-lines('fileNames.txt') ! doc(.)/descendant::booking
 file:list('/dir1/dir2/dir3') ! concat('dir1/dir2/dir3/', .) ! doc(.)/descendant::booking

Another interesting pattern is given by the use of “document catalogs” - simple XML documents
containing a collection of document URIs, for example:

 <docs>
 <doc href='/a/b/c/foo.xml'/>
 <doc href='/a/b/c/bar.xml'/>
 <doc href='/x/y/z/poo.xml'/>
 <doc href='http://example.com/msgs/zoo.xml'/>
 </docs>

4

XQuery as a data
integration language

An easy way to create such catalogs relies on the file:list function, an extension function defined
by the EXPath community group ([3]):

 <docs>{
 let $dir := '/a/b/c' return
 file:list($dir, true(), '*.xml') !
 <doc href="{concat($dir, '/', .)}"/>
 }</docs>

The function call returns the names of all files found in a specified directory and matching a specified
name pattern. If the second call parameter has the boolean value true, the file search is extended
to all sub directories of the specified directory. A slight modification of the code suffices to feed the
catalog with the contents of several directories and their sub directories:

 <docs>{
 for $dir in tokenize('/a/b/c /x/y/z') return
 file:list($dir, true(), '*.xml') !
 <doc href="{concat($dir, '/', .)}"/>
 }</docs>

After storing such a catalog as a file (e.g. docs.xml), an expression like

 doc('docs.xml')//@href/doc(.)/descendant::booking

navigates the sum total of referenced documents.

To summarize, XQuery support for bulk navigation is excellent, as the semantics of navigation are
independent of the cardinality and actual contents of the nodes to which it is applied. Any path
expression P can be effortless “promoted” to bulk navigation: just add one or several initial steps (S)
producing a sequence of documents:

 P => S/P

or add an initial step doc(.), make the extended path the right-hand operand of a simple map
expression (E1 ! E2) and add a left-hand operand (some expression E) producing a stream of URIs:

 P => E ! doc(.)/P

A similar pattern consists in shifting the path expression into the return clause of a FLWOR
expression and adding to the path an initial step referencing a FLWOR variable, e.g.:

P => for $doc in E return $doc/P
P => for $uri in E return doc($uri)/P

In the context of data integration, this ability to apply navigation to single and multiple resources alike
is obviously very useful.

Boundless navigation
As pointed out in the previous section, a non-terminal path step may be any expression provided it
yields only nodes. This implies that navigation may “leap” across document boundaries. A simple
pattern combines initial steps leading to items which contain document URIs, a subsequent doc(.)
step resolving the URIs and trailing steps which move into the resulting documents:

5

XQuery as a data
integration language

 P1/doc(.)/P2

where P1 is a path expression yielding document URIs and P2 is a path expression navigating into the
documents referenced by these URIs. Example:

 /descendant::booking/flight/brand/@href/doc(.)//name[@lang='fr']

Remembering that any navigation may be turned into bulk navigation by just adding initial steps to
the path, we can easily combine bulk navigation with cross-document navigation:

 doc('msgs.xml')//@href/doc(.)/descendant::booking/flight/brand/@href/doc(.)//name[@lang='fr']

In summary, the XPath model of navigation is essentially boundless – navigation can have starting
points distributed over several documents and can cross document boundaries any number of times.

Compound navigation (FLWOR)
As path steps are (almost) arbitrary expressions, they can also reference the values bound to variables,
and these may in turn be the result of path expressions. FLWOR expressions can therefore be used as
a convenient “workbench” for constructing compound navigation. The following code example …

• navigates into a configuration document, extracting a date value ($since)

• navigates into an inventory of codes, selecting codes annotated to have a creation date greater or
equal to the $since date

• navigates into a set of message documents, selecting flight elements containing new airport codes

 let $since := doc('cfg.xml')//since
 let $newCodes := doc('codes.xml')//code[@since ge $since]
 return
 doc('msgs.xml')//@href/doc(.)/
 descendant::booking/flight[arrivalAirport/@code=$newCodes]

Weighing the complexity of the operation against the amount and complexity of code, support for
compound navigation may be regarded as a distinct strength of the XQuery language.

Aggregating information (FLWOR/group by)
Data integration often requires aggregation – reducing the information content of related resources
to an aggregated representation. The group by clause of FLWOR expressions is well suited for
such purposes. To give an example, the following code extracts from a set of documents all flight
elements, groups them by the departure airport and reports for each departure airport the respective
arrival airports:

 <routes>{
 for $f in doc('msgs.xml')//@href/doc(.)//flight
 group by $airport := $f/departureAirport/@code
 let $to := sort(distinct-values($f/arrivalAirport/@code))
 return
 <route from="{$airport}" to="{$to}"/>
 }</routes>

Constructing information
In information processing, the finding of existent and the construction of new information play equally
fundamental roles.

6

XQuery as a data
integration language

Embedded expressions
In the context of data integration, construction is particularly important as a means to collect and
recombine distributed information, producing new entities of augmented value. Such construction
must transfer existent structures – either as faithful copies or transformed into different, often
condensed representations – into an emerging new structure. The ideal is seamless integration of
information retrieval into construction. The XQuery capabilities in this regard are provided by node
constructor expressions. A key feature is the concept of embedded expressions, which are like
placeholders to be replaced at run time by the expression values. In particular, the embedding of path
expressions amounts to an extremely concise reuse of existent structures, and for a literal merging of
the operations of navigation and construction. Consider the following code:

 <bookings>{doc('msgs.xml')//@href/doc(.)//booking}</bookings>

which constructs a new document containing copies of all booking elements found in a set of
documents. The elements are copied into the result document, including attributes and all descendant
nodes. The next example does not copy the elements, but represents them by short summary elements:

 <bookings>{
 doc('msgs.xml')//@href/@doc(.)//booking/
 <booking kind='{@bookingType}' provider='{brand}'/>
 }</bookings>

Note that the attribute constructors (e.g. kind='…') are in turn embedded expressions navigating
into the elements selected by the preceding path step. Bringing into play the XQuery support for bulk
navigation and adding to the constructed elements information about their provenance, we achieve an
interesting result with very little code:

 let $dir := '/data/msgs'
 let $bookings :=
 file:list($dir, true(),'msg*.xml') ! concat($dir, '/', .) ! doc(.)//booking/
 <booking kind='{@bookingType}' provider='{brand}' src='{root()/document-uri(.)}'/>
 return
 <bookings count='{count($bookings)}'>{$bookings}</bookings>

The examples showed that the XQuery abilities for concise navigation and for concise construction
complement each other. They enable an elegant mapping of distributed information onto new, useful
entities of information.

Transformation
When new information is essentially a modified representation of information already existent,
construction is often perceived as transformation. A common use case in the context of data integration
– where applications deal with a multitude of resources, formats and format versions - is the
normalization of data sources, mapping different format versions to a single reference format expected
by downstream components. Consider the following code:

 //booking/f:bookingToRefBooking(.)/f:processRefBooking(.)

which assumes the existence of two user-defined functions, one transforming booking elements to
a normalized format and the other processing a normalized booking element. The code navigates to
booking elements and feeds a normalized version of each one to a processing function. This example
demonstrates the remarkable flexibility of path expressions which can combine navigation with any
operation mapping nodes to other nodes - in this case navigation with transformation.

7

XQuery as a data
integration language

The XQuery language includes a typeswitch expression which enables transformation by recursive
processing, copying some items unchanged and modifying or deleting others. For example, the
following query creates a modified copy of the initial context document, deleting @foo attributes,
changing the value of @bar attributes and adding to <zoo> elements a <timeStamp> child element:

 declare function local:edit($n as node()) as node()? {
 typeswitch($n)

 case document-node() return
 document {$n/node() ! local:edit(.)}

 case element(zoo) return
 <zoo>{
 $n/@* ! local:edit(.),
 <timestamp>{current-dateTime()}</timestamp>,
 $n/* ! local:edit(.)
 }</zoo>

 case element() return
 element {node-name($n)}{$n/(@*,node())!local:edit(.)}

 case attribute(foo) return ()
 case attribute(bar) return attribute bar {upper-case($n)}
 default return $n
 };
 local:edit(.)

The code pattern “recursive function consisting of a typeswitch expression” enables convenient
implementation of many transformation tasks. It cannot, however, compare with the possibilities
offered by XSLT and its template model ([19]). XQuery 3.1 ([15]) therefore introduces an
fn:transform function which invokes an XSLT stylesheet and returns the transformation result. As
the result of an XSLT transformation thus becomes the value of an XQuery expression, XSLT-powered
transformation is seamlessly integrated into the XQuery processing, as this example demonstrates:

 transform(map{'stylesheet-uri' : '/apps/foo.xsl',
 'source-node' : doc('/data/msgs/msg1.xml')})
 //flight

The stylesheet may also be generated on the fly, by the XQuery code itself:

 declare function local:buildXslt(…) {…};

 transform(map{'stylesheet-node' : local:buildXslt(…),
 'source-node' : doc('/data/msgs/msg1.xml')})
 //flight

The XQuery programmer thus may resort to XSLT code as an additional means of expressing
transformation.

Modification
The XQuery Update Facility, specified by a self-contained W3C recommendation (17), provides a set
of expressions which do not produce a value, but effect an in situ modification of existent resources.
Besides, the facility includes two expressions (transform and copyModify) which apply update
expression to copies of existent nodes, returning the result and thus enabling the construction of new
structure by expressing the modification of existent structure. The benefits of the Update Facility

8

XQuery as a data
integration language

are thus twofold – in situ update and elegant construction of new values by expressing modification.
Note that the Update Facility is the only non-proprietary way to achieve in situ updates of documents
residing in an XML database or the file system.

A striking feature of update expressions (used for in situ update or the construction of new values) is
the clean separation and seamless integration of selection and modification:

• a sub expression selects the target nodes to be modified

• another sub expression specifies the modification itself

as illustrated by a code example:

 insert node
 <Underwriter>?</Underwriter>
 as last into
 //booking[@btype='insurance'][not(Underwriter)]

As a consequence, the transition from single document modification to bulk modification is as easy
as the transition from single document navigation to bulk navigation, for example:

 for $doc in file:list('/data/msgs', true(), '*.xml') !
 concat('/data/msgs/', .) ! doc(.) return

 insert node
 <Underwriter>?</Underwriter>
 as last into
 $doc//booking[@btype='insurance'][not(Underwriter)]

A query effecting in situ updates cannot produce any result value: a query is either updating and not
producing a result, or producing a result and not updating. Such a limitation can make it impossible
to solve a complex task of data integration with a single query, and the question arises how several
queries can be orchestrated into a coherent processing. The problem is related to the general problem
of how to reconcile the XQuery processing model with side effects as they are required within a larger
processing context. We will return to this subject (the section called “Issue: the snapshot model”).

Resource exploration
Data integration often requires some preparatory exploration of little or unknown resources. XQuery’s
capabilities of bulk navigation, aggregation and document construction enable a very efficient
development of general as well as special purpose reporting tools. For example, let us assume we are
interested in the XML resources found in some directory tree (a directory and all direct and indirect sub
directories). The following query reports all document types (root element names and namespaces):

 declare variable $dir external;
 declare variable $pattern external := '*.xml';
 string-join(sort(distinct-values(
 file:list($dir, true(), $pattern) ! concat($dir, '/', .) !
 doc(.)/*/concat(local-name(.), '@', namespace-uri(.))
)), '
')

The following query yields for an input document a list of all element names:

 sort(distinct-values(//*/local-name()))

and a list of all element data paths can be obtained like this:

9

XQuery as a data
integration language

 string-join(sort(distinct-values(
 //*/string-join(ancestor-or-self::*/local-name(), '/')
)), '
')

An extended report of all document types found in a directory tree, including for each type a list of all
data paths, can be achieved by few lines of XQuery code:

 declare variable $dir external;
 declare variable $pattern external := '*.xml';
 string-join(
 for $doc in
 file:list($dir, true(), $pattern) ! concat($dir, '/', .) ! doc(.)
 group by $doctype :=
 $doc/*/concat(local-name(.), '@', namespace-uri(.))
 let $paths := sort(distinct-values(
 $doc//*/string-join(ancestor-or-self::*/local-name(), '/')))
 order by $doctype
 return ($doctype, $paths ! concat(' ', .)
), '
')

Note that the report is document type oriented, not document oriented: it integrates the information
content of all documents sharing a particular document type and found within a directory tree.

XQuery is also well-suited for writing small ad hoc queries answering specific questions. Example:
what is the minimum / maximum number of <booking> elements contained by <msg> elements,
considering the documents located in a given directory tree? The following query gives the answer:

 let $dir := '/data/msgs'
 let $counts :=
 file:list($dir, true(), '*.xml') ! concat($dir, '/', .) !
 doc(.)//msg/count(.//booking)
 return (min($counts), max($counts))

The following query can be used for listing the names of files matching some particular condition –
for example containing a <msg> element which does not contain any <booking> elements:

let $dir := '/data/msgs' return

string-join(('files: ', '======', file:list($dir, true(),'*.xml ') ! concat($dir, '/', .) ! doc(.)
 //msg[not(.//booking)]
 /root()/document-uri(.)), '
')

To get the names of files matching a different condition, just replace the following expression by a
different one:

 //msg[not(.//booking)]

Resorting to an extension function for dynamic evaluation of XQuery expressions - as offered by
several XQuery processors - the condition can be turned into a string parameter and the query is truly
generic. The following code uses an extension function (xquery:eval) supported by the BaseX
processor:

 declare variable $dir external := '/data/msgs';
 declare variable $cond external := '//msg[not(.//booking)]';

10

XQuery as a data
integration language

 string-join(('files: ', '======', file:list($dir, true(),'*.xml ') ! concat($dir, '/', .) ! doc(.)
 /xquery:eval($cond, map{'':.})
 /root()/document-uri(.)), '
')

As illustrated by several examples, XQuery is an appropriate language for creating tools exploring
XML resources and answering general as well as specific and ad hoc questions.

Resource validation
Data integration often involves the validation of resources against expectations. Validation reports may
be a primary goal in its own right, and the exclusion of invalid resources from further processing may
be required in order to ensure data integrity, operational robustness and efficiency.

Schema validation
The standard function library of XQuery (13) does not yet contain any functions for validating
XML documents against XSD schemas. As an optional feature, the XQuery language does include a
validate expression, which returns a copy of the validated document with type annotations added,
or raises an error in case of validation errors. Two points should be noted. First, the goal to gather
information about validity is different from the goal to construct a type-annotated document, and it is
the former goal which is common, not so much the latter. Second, implementation of the validate
expression is not common among popular XQuery processors, especially among open source products.
We think that an XQuery function offering XSD validation is desirable in general, and highly desirable
in the context of data integration. For the time being, several XQuery processors offer vendor-specific
extension functions for XSD-validation of XML documents.

Bulk schema validation
The typical signature of an extension function for XSD-validation has two parameters, one supplying
an instance document and one supplying a schema document. Interestingly, such a signature suffices
to enable bulk validation – the validation of many instance documents against a collection of candidate
schemas, applying to each instance document the appropriate schema document and integrating the
results into a single report. The ease of accomplishing this follows from the navigational capabilities
and the aggregation-friendliness of XQuery:

• for a given instance document select the appropriate schema by matching the namespace and local
name of the document root element against the schema target namespace and the names of the top-
level element declarations

• collect single document validation results in a simple FLWOR expression

• integrate the single document validation results using an embedded expression

A typical implementation will comprise only few lines of code. The following query is an example,
relying on the BaseX extension function validate:xsd-info. The query validates all XML
documents found in a directory tree and matching a file name pattern, against a schema which is for
each document automatically selected from all schemas found in a different directory tree:

 declare variable $dir external;
 declare variable $fname external;
 declare variable $xsdDir external;

 let $xsds :=
 file:list($xsdDir, true(), '*.xsd') ! concat($xsdDir, '/', .) ! doc(.)
 let $reports :=
 for $uri in file:list($dir, true(), $fname) ! concat($dir, '/', .)
 let $doc := doc($uri)
 let $xsdURI := $xsds[xs:schema/xs:element/@name = $doc/local-name(*)]

11

XQuery as a data
integration language

 [string(xs:schema/@targetNamespace) eq $doc/namespace-uri(*)]
 [1]/document-uri(.)
 let $msgs := validate:xsd-info($doc, $xsdURI) ! <msg>{.}</msg>
 return
 <report doc="{$uri}" xsd="{$xsdURI}" errorCount="{count($msgs)}">{
 $msgs
 }</report>
 return
 <reports>{$reports}</reports>

Expression-based validation
It is a well-known fact that grammar-based validation like XSD-validation cannot cover (or not cover
well) typical business rules, which constrain the presence and data contents of items in response to
the presence and contents of other items. For example, XSD 1.0 (18) cannot express the rule that an
element must either have a @fooRef attribute and no child elements, or have child elements but
no such attribute. Similarly, there is no way to assert that an element must have an @approvedBy
attribute if the <amount> child element contains a value larger 1000.

It is interesting to note how very simple it is to perform such checks using XQuery expressions. In
this context one should remember the core concept of the Effective Boolean Value (15), which is
a generic mapping of arbitrary expression values to a Boolean value. Consider the following user-
defined XQuery function which checks a sequence of XML documents against two rules and delivers
an integrated validation report:

 declare function local:checkDocs($docs as document-node()*)
 as element(errors)? {
 for $doc in $docs
 let $errors := (
 <error msg="No product found."/>
 [empty($doc//*:Product)]
 ,
 <error msg="Travel start date > end date."/>
 [$doc//travel[@start gt @end]]
)
 return
 if (not($errors)) then () else
 <errors uri="{document-uri($doc)}">{$errors}</errors>
 };

The code follows a simple pattern, within which the only specific elements are the actual check
expressions and error messages. Therefore it is simple to write a generic version of such a check
function, which is configured by a collection of expression/message pairs. As an example, any
collection of assertions stored in a file like the following:

 <assertions>
 <assertion msg="No product found."
 expr="empty(//*:Product)"/>
 <assertion msg="Travel start date > end date."
 expr="//travel[@start gt @end]"/>
 </assertions>

could be applied to the contents of a directory tree by the following generic query:

 declare variable $dir external;
 declare variable $fname external;

12

XQuery as a data
integration language

 declare variable $assertions external;

 declare function local:checkDocs($docs as document-node()*,
 $assertions as element(assertion)*)
 as element(errors)* {
 for $doc in $docs
 let $context := map{'':$doc}
 let $errors :=
 $assertions[xquery:eval(@expr, $context)]/<error msg="{@msg}"/>
 return
 <errors uri="{document-uri($doc)}">{$errors}</errors> [$errors]
 };

 let $docs := file:list($dir, true(), $fname) ! concat($dir, '/', .) ! doc(.)
 let $checks := local:checkDocs($docs, doc($assertions)/*/*)
 return
 <errorReport>{$checks}</errorReport>

The example uses a vendor-specific extension function (xquery:eval, provided by the BaseX
processor) for the dynamic evaluation of XQuery expressions. Similar functions are offered by various
XQuery processors (e.g. 1, 2, 9). As of this writing, the standard function library of XQuery (13) does
not yet contain any similar function, and it is to be hoped that future versions will amend this. As the
example demonstrated, dynamic evaluation enables the use of XQuery expressions as configuration
parameters, on which very powerful and flexible XQuery programs may be based. Note that the
example was kept very simple in order to be illustrative. A tool for production use would be more
elaborate. It might for example support the arrangement of assertions in a tree whose inner nodes
are associated with guard expressions, controlling whether the respective sub-tree of assertions is
evaluated or ignored. Another important refinement would be support for looping validation: a check
expression can be accompanied by a "target expression" providing a range of context items, to be used
successively during repeated evaluation of the check expression.

Resource access
The previous section took resource access for granted and concentrated on the evaluation of resource
contents. The current section analyses the capabilities of XQuery to access resources.

Introduction
Data integration is based on the ability to access data resources – entities of information like files,
database entries and service responses. In the context of XQuery, any information is represented
by XDM values, and access to a resource is equivalent to an XDM value representing the resource
contents:

resource access = XDM value representing the resource contents

Such a value is either supplied from without, or it is received as the value of a function call. If supplied
from without, it is the initial context item (accessible via the context item expression) or an external
parameter (accessible via variable reference expression). In principle it is possible that a resource
provided from without would not be accessible via function call, but such scenarios are uncommon
and of little interest for the purposes of this discussion. Therefore the capability of resource access can
be equated with the availability of functions returning a resource representation.

Resource access patterns
For a given resource, different XDM representations may be considered. For example, a JSON
document might be represented (a) as a string, (b) as nested maps and/or arrays, (c) as an XML
document. As an unstructured representation (string) is far less valuable for processing purposes than

13

XQuery as a data
integration language

a structured representation, an evaluation of access capabilities must distinguish between access as
unstructured text and access as structured information. If, however, for a given media type a function is
available which parses a string into a structured representation, access as unstructured text is virtually
equivalent to access as structured information, as text access and text parsing can be combined by
nested function calls, for example:

 json-to-xml(unparsed-text('msg.json'))

Resource accessing functions can be categorized by their main input:

• access by URI – a function which receives a URI parameter and returns a resource representation

• access by text – a function which receives the text of a resource as a string and returns a structured
representation

• access by message – a function which receives a request message plus a recipient URI and returns
a response message

• access by query – a function which receives a query plus connection data and returns a search result

Access by URI does not constrain the URI scheme and hence the access protocol (file, HTTP, ftp, …).
The function signature treats the URI as an opaque item of information, and the actual scope of access
depends on the XQuery processor as well as the operational context (e.g. internet and WLAN access).
In practice, access to the file system and the resolving of URIs which are HTTP or ftp URLs can be
expected. If the XQuery processor is part of an XML database system, URI access is also used for
accessing database entries.

Access by text is usually applied to the result of access by a different pattern – by URI, message or
query.

Access by message is important as it includes all web services requiring a request message sent per
HTTP POST. Namely, this category contains all SOAP services. In a service-oriented environment, the
appropriateness of a language for data integration may stand and fall with access to all web services,
including SOAP services.

Access by query is required in order to work with databases, unless they are exposed as web services.
In many environments, relational and/or NoSQL databases play a dominant role, so that resource
access by query is an indispensible prerequisite for data integration.

Scopes of availability
Resource access functions can also be categorized by the scope of availability:

• standard functions – provided by every conformant XQuery processor (13)

• EXPath functions – unofficially standardized by a specification produced by the EXPath community
group (3)

• vendor functions – provided by XQuery processors as a product-specific extension function

Resource access functions
The following table summarizes resource access provided by XQuery functions. Besides standard
functions (13), several extension functions are also taken into account, provided they have been defined
by the EXPath community group or are available in one of the following XQuery processors: SaxonHE,
SaxonPE, eXistDB, BaseX. Functions defined by the EXPath group are marked by the postfix (EXP),
BaseX defined functions by the postfix (BSX).

Table 1.

14

XQuery as a data
integration language

Resource access functions - an overview. The Source value * indicates that the
function is part of the XQuery standard / version 3.1; Source value (*) indicates an
EXPath-defined function and other values are the names of the respective XQuery
processor. The names of non-standard functions are displayed in italics.

Recource type Input Function Source XDM
representation

XML document URI fn:doc * document-node()
URI fn:collection * node()*
text fn:parse-xml * document-node()
text fn:parse-xml-

fragment
* document-node()

HTML document text html:parse BaseX document-node()
text util:parse-html eXist-db document-node()
text xdmp:tidy MarkLogic document-node()

JSON document URI fn:json-doc * map|array
text fn:parse-json * map|array
text fn:json-to-xml * document-node()
text json:parse BaseX document-node()
text util:parse-json eXist-db document-node()

CSV text csv:parse BaseX document-node()
text URI fn:unparsed-text * xs:string

URI fn:unparsed-text-
lines

* xs:string*

binary URI file:read-binary (*) xs:base64Binary
URI util:binary-doc eXist-db xs:base64Binary
URI fetch:binary BaseX xs:base64Binary

archive-entry URI archive:extract-
text

(*) xs:string

URI archive:extract-
binary

(*) xs:base64Binary

URI xdmp:zip-get MarkLogic document-node() |
text() |
xs:base64Binary

SQL result set query sql:execute BaseX element()*
MongoDB result
set

query mongo:find (*) element()*

HTTP response message http:send-request (*) element()|xs:string

Note that XML documents can be accessed via URI and also by parsing XML text. The latter possibility
is important, as the text of an XML document is not necessarily an independent resource, but may be
embedded in another resource. It may, for example, be retrieved from a relational database column or a
NoSQL database field, and sometimes unparsed XML text is even encountered as text content of XML
elements. An example of XML containing unparsed XML are the test definitions and test logs created
by JMeter (6), a popular open source framework for testing web applications and other IT components.

XQuery is focused on text resources. Nevertheless, also binary data can be represented by an XDM
item, and therefore can be accessed. Using the EXPath-defined file module (4) or the BaseX-
defined archive module, the contents of binary resources are read into an xs:base64Binary
representation, and binary data can also be created by preparing an xs:base64Binary

15

XQuery as a data
integration language

representation and writing it into a file or archive, which then receives the binary data corresponding
to the xs:base64Binary representation.

Standard versus extension functions
The table of resource access functions (Table 1, “

Resource access functions - an overview. The Source value * indicates that the function
is part of the XQuery standard / version 3.1; Source value (*) indicates an EXPath-
defined function and other values are the names of the respective XQuery processor.
The names of non-standard functions are displayed in italics.

”) shows a fairly broad scope of resource access, covering various media types (XML, HTML,
JSON, CSV, plain text) and data platforms (file system, HTTP, ftp, web services, relational databases,
NoSQL databases, archives). One may regard this scope as a reasonable base for tackling tasks of data
integration in serious.

But the scope of resource access depends to a considerable degree on extension functions, some
EXPath-defined, others vendor-specific. Relying on standard functions, only XML and JSON
documents can be accessed as structured information, and the following data platforms are
inaccessible: relational databases, NoSQL databases, SOAP web services, archives. Besides, HTML
and CSV resources can only be accessed as plain text, not as structured information. On the other
hand, resource access and structured representation play a crucial role in data integration. It may be
concluded that the XQuery working group of the W3C has not yet identified data integration as a key
field of XQuery usage.

XDM binding
The previous section reported the current support which XQuery offers for accessing resources. The
account should be regarded as a snapshot capturing a particular version of the language specification
(3.1), particular versions of popular XQuery processors and the results of EXPath activities up to a
particular date. Now we attempt to treat the topic of XQuery access to resources in a more abstract
way, analyzing potentials and limitations.

Introduction
An XQuery program is an expression which is recursively composed of sub expressions. XQuery
expressions have an input - expression operands and possibly the context item - and an output, which
is the expression value. Every input value and the output value are XDM values. Any resource access
is therefore implemented as an expression using an XDM representation of the resource as operand
or context item.

Using XQuery 1.0, the only accessible resources are XML documents, which the function fn:doc
represents as a node tree. XQuery versions 3.0 and 3.1 broadened the scope of resource access
significantly: any text-based resource can be accessed as a string, and JSON documents can be accessed
as structured information. EXPath-defined as well as vendor-specific extension functions add further
possibilities (the section called “Resource access”). We prefer to regard these emerging functions not
as independent and unrelated features, but as aspects of a long-term evolution shifting the XQuery
language from an XML processing language towards a platform of information processing and data
integration.

If such a development should indeed be pursued by the W3C XQuery working group and XQuery
implementers, the representation of resources by XDM values should be based on general concepts
which might help to assess alternative approaches and protect consistency.

XDM binding, XDM equality
A structured representation of resources is the foundation enabling navigation and selection of
information. But what exactly does the term “representation of a resource” mean? Are there general

16

XQuery as a data
integration language

rules how to define and characterize representations? In this context we are not interested in the trivial
case of a single string (or a sequence of strings corresponding to text lines). We contemplate structured
representations, composed of distinct items which represent the logical building blocks of the resource.

In general, resource representation by an XDM value should be “lossless”, but lossless means without
loss of significant information, rather than a faithful representation of the exact sequence of characters.
When a resource is parsed into an XDM representation and subsequently serialized into an instance
of the resource’s media type, the result need not be the same sequence of characters as the original
instance, but it should have the same information content. If, for example, the resource is a JSON
document, the result of round-tripping may differ with respect to whitespace characters surrounding
value separators, but it should not differ with respect to member names, member values or datatypes.

It is problematic to define lossless representation in general terms. We cannot assume all resource
formats of interest to be described by a rigorous information model defining the abstract information
content conveyed by the text of a format instance. Even when the format is defined very precisely, as
is the case with JSON defined by RFC 7159 (5), the distinction between significant and not significant
information is not necessarily unambiguous. In RFC 7159, the significance of object member ordering
is discussed as follows:

“ JSON parsing libraries have been observed to differ as to whether or not they make the ordering
of object members visible to calling software. Implementations whose behavior does not depend on
member ordering will be interoperable in the sense that they will not be affected by these differences. ”

This reads like a recommendation not to rely on order, but we find no definitive statement declaring
the insignificance of order. (Interestingly, the popular NoSQL database MongoDB uses JSON in an
order-sensitive way.) The lesson to be learned from this example is that the definition of an XDM
representation should be explicit about all aspects of information which may not be preserved.

In order to give the definition of resource representations a formal footing, we propose the introduction
of a new term, the XDM binding of a data format, defined as follows. Given a data format F, an XML
binding consists of two XPath functions, a parsing function (P) and a serialization function (S). The
parsing function maps a format instance to an XDM instance, the serialization function maps XDM
instances to format instances. Parsing and serialization functions must together meet the following
constraints:

1. P maps every format instance to an XDM instance

2. S maps every XDM instance X1, which has been obtained by applying P to a format instance F1,
to a second format instance F2 so that applying P to F2 yields an XDM instance X2 so that X1 and
X2 are deep-equal (as defined in (13)); formally:

For every string F1 which is a valid instance of format F, the following expression is true:

deep-equal (P(F1), P(S(P(F1))))

An XDM binding is identified by a URI which is obtained by concatenating the namespace and local
name of the parsing function.

Examples: The specification “XPath and XQuery Functions and Operators 3.1” (13) defines two XDM
bindings for the media type “JSON”:

• http://www.w3.org/2005/xpath-functions#parse-json

• http://www.w3.org/2005/xpath-functions#json-to-xml

Note that this abstract definition translates the informal concept of “lossless representation” into the
formally defined deep-equality of XDM values. In this sense, an XDM binding is neither lossless or
not lossless, but axiomatically defines a binding-based equivalence between format instances: given
a particular XDM binding, two format instances are equivalent if their representing XDM values are
deep-equal. It is a different question in how far this equivalence matches the operational requirements
of a lossless representation.

17

XQuery as a data
integration language

The equivalence of format instances which have deep-equal XDM representations should be captured
by a formally defined term. Given a data format for which an XDM binding B has been defined, two
instances of this data format are said to be XDM-equal (by binding B) if the XDM values obtained
from function B are deep-equal. Inspecting the XDM bindings fn:json-doc and fn:json-to-
xml, one may observe these facts:

• XDM-equal (by fn:json-to-xml) implies XDM-equal (by fn:parse-json), but not the
other way around, as differences in the order of object members preclude XDM-equality by
fn:json-to-xml, but not by fn:parse-json.

• Two JSON documents which are XDM-equal by at least one of these bindings are classified as
“without significant differences” by the JSON spec RF7159.

The proposed definition of an XDM binding has an interesting implication. Given an XDM binding,
every XDM instance can either be mapped to a format instance in a round-trippable way (that is,
subsequent parsing would yield an XDM value deep-equal to the original one), or cannot be mapped
to a format instance.

An XDM binding creates the possibility to achieve the transformation of format instance F1 into an
instance F2 by transforming the XDM instance X1 obtained for F1 into an XDM instance X2 which
would be obtained by parsing F2. The result of serializing X2 may not be identical to F2, but it is XDM-
equal to F2. The imprecision incurred by constructing a resource’s XDM representation, rather than
an instance of the resource format itself, is bounded by the XDM-equality of the alternative results.

From the definitions of XDM binding and XDM-equality, we derive the definition of format
resolution. Given a data format with two XDM bindings B1 and B2, the bindings are said to have
equal format resolution if every pair of format instances F1 and F2 which is XDM-equal by B1 is
also XDM-equal by B2, and vice versa. One binding B2 is said to have higher format resolution if
every pair of format instances which is XDM-equal by B2 is also XDM-equal by B1, and some pairs
are XDM-equal by B1, but not by B2. As an example, the XDM binding fn:json-to-xml has a
higher format resolution than the binding fn:parse-json.

From the definition of format resolution we derive the further definition of XDM binding consistency,
which SHOULD be preserved when for a given data format several XDM bindings exist. These
bindings are consistent if for any pair of bindings the bindings have either equal format resolution, or
one binding has a higher format resolution.

An example of a further data format for which different XDM bindings are conceivable is CSV. The
content of a CSV record might be captured by an array of arrays (representing the sequence of rows),
and it might be represented by an XML document. Both bindings should probably have equal format
resolution; for example, they should both capture the character sequences of all values, and they should
both ignore differences of syntactical representation like the choice of the separator character.

XML binding
The only complex items defined by the XQuery data model XDM (16) are nodes, maps, arrays and
functions. A structured representation of a resource is therefore expected to be either a node tree or
a set of nested maps and/or arrays which is rooted in a single map or array. (Note: a conceivable
exception would be a sequence of items, possibly evaluated by special functions playing the role of an
interface to a logical internal structure.) An XDM binding which represents the resource as a node tree
we call an XML binding. This section compares XML binding with its main alternative, the binding
to maps and/or arrays.

Consider the following section of a FLWOR expression, which constructs different XDM
representations of JSON resources:

 let $m := json-doc('r1.json') (: map/array :)
 let $s := unparsed-text('r2.json') ! json-to-xml(.) (: XML, per standard function :)
 let $b := unparsed-text('r3.json') ! json:parse(.) (: XML, per BaseX extension function :)

18

XQuery as a data
integration language

The first representation ($m) consists of nested maps and arrays. Every JSON item – object, array,
string, number, literal – is represented by a distinct map entry or array member. It can be individually
addressed by chaining map and array lookups, which amounts to specifying a “path” of map entry
names and/or array index values. Every JSON item at an exactly known location can thus be retrieved
fairly easily. Examples:

 let $customerFirstName := $m?customer?firstName
 let $bookingId1 := $m?services?booking?1?bookingID
 let $bookingIds := $m?services?booking?*?bookingID
 let $bookingIdLast := $m?services?booking?*[last()]?bookingID

Such simple retrieval requires exact knowledge of the internal document structure. A minor issue is
that array access requires a separate path step (for example "?1" or “?*”). Therefore items cannot be
addressed without exact knowledge which object members along the path are single-valued and which
are array-valued. If, for example, the booking member is a single object, the following path might
retrieve the bookingID member of the booking object:

 $m?services?booking?bookingID

But if bookings are multiple – if the booking member is an array of objects - the path must be adapted:

 $m?services?booking?*?bookingID

A major issue is the lack of built-in support for navigation along axes, as offered by path expressions.
Assume we do not know the exact document structure, and we want to extract all booking ID values,
defined as the bookingID member values of objects which are themselves booking member
values. Dealing with a comparable XML document, the retrieval would correspond to this path
expression:

 //booking/bookingID

Dealing with a map/array representation of a JSON document, the retrieval would require application
code similar to the following:

 declare function local:descendant($item as item(), $fieldName as xs:string)
 as item()* {
 typeswitch($item)
 case map(*) return (
 let $field := $item($fieldName)
 return
 if ($field instance of array(*)) then $field?* else $field,
 map:keys($item)[. ne $fieldName] !
 local:descendant($item(.), $fieldName)
)
 case array(*) return $item?* ! local:descendant(., $fieldName)
 default return ()
 };
 local:descendant($data, 'booking')?bookingID

The effort is considerable, and such navigation is error-prone. In comparison, using the standard XML
representation of the JSON document ($s) as produced by function fn:json-to-xml, the booking
IDs are retrieved by a simple, though not very intuitive, expression:

 $s//*[@key eq 'booking']/(self::j:map, self::j:array/j:map)/*[@key eq 'bookingID']

19

XQuery as a data
integration language

Using the vendor-specific XML representation of JSON offered by BaseX ($b), retrieval becomes
even simpler:

 $b//booking/(., _)/bookingID

The examples demonstrate that XQuery’s outstanding support for data navigation applies to XML
structures (node trees), but does not apply to nested maps and arrays. Remembering the extent to which
XQuery’s capabilities for data integration are based on navigation capabilities, the XDM representation
of non-XML resources gains great importance. The standard function fn:json-to-xml as well as
vendor-specific extension functions like BaseX-defined json:parse and csv:parse demonstrate
that various non-XML media types may be represented as XML node trees, and the coexistence
of the standard functions fn:json-to-xml and fn:json-doc shows that for a given media
type different structured representations are possible. We acknowledge the fact that a map/array
representation has its own benefits compared with a node tree representation – it is more light-weight,
which means that it consumes less memory and simple access operations are probably faster. But
we also note that the question whether a given media type can be represented by node trees or not
decides whether the media type in question is or is not within scope of XQuery’s particular navigation
capabilities, and this comes close to saying that the availability of a node tree representation decides
whether the media type is or is not within scope of XQuery’s particular integration capabilities.

The role of REST
REST services can play a key role in data integration. They provide an infrastructure which may

• reorganize the URI space occupied by a set of related resources, creating clearly structured and
intuitive URI trees

• enhance the resource space by binding new URIs to resource derivatives (reports, aggregations, …)

REST services can be implemented and consumed using many programming languages. XQuery is a
particularly interesting choice for two main reasons:

• as a REST client, REST calls can be seamless integrated into data navigation (e.g. fn:doc(REST-
URI)//bookingID)

• as a REST service implementation, the combined capabilities of navigation and construction enable
a very elegant translation of resources into responses

As a general rule, REST services lower the barrier to access resources, and for this reason they increase
the opportunities for XQuery to navigate and integrate resource contents. Several XQuery processors
support the RESTXQ API (8), a set of XQuery annotations enabling very elegant implementation
of REST services. This means that XQuery can be used to create the very infrastructure which
increases the usefulness of XQuery to a particular degree. When facing challenges of data integration,
commitments to using XQuery and to building REST services are synergetic.

XQuery and RDF
This section explores possible relationships of XQuery and RDF.

RDF and data integration
RDF is an information model which is almost by definition highly relevant to data integration. The
basic unit of information is a triple, consisting of subject, predicate and object, where subject and
predicate are URIs and the object is either a URI, a literal value (e.g. a string, a number or a date) or a
so-called blank node, which is a URI-less subject of further triples. A crucial aspect is the independent
and self-contained character of a triple: the information conveyed by a triple does not depend on a
surrounding data resource and a location within it, as is the case for example with XML nodes, JSON

20

XQuery as a data
integration language

object members and CSV cells. Triples are implicitly related to each other, as one triple’s object may
be a URI which is another triple’s subject, so that a set of triples is a graph consisting of nodes (URIs,
literal values and blank nodes) and connecting arcs which are predicates.

Triples are typically constructed by an evaluation and transformation of non-RDF resources – e.g.
spreadsheets, relational tables, XML and JSON documents. As the information content of a triple is
self-contained and bears no traces of the original “source” from which it has been constructed, a graph
of triples can be evaluated without considering any information except for the triples themselves. This
means simplicity: given a set of triples, the number, physical distribution and media types of data
resources which have contributed to the construction of the set has become invisible. A triple set can
thus be viewed as a homogeneous extract gained from the processing of (potentially) multiple and
heterogeneous data sources. It is a special kind of resource whose evaluation is an operation of data
integration.

When evaluating the appropriateness of a programming language for data integration, the relationship
between the language in question and RDF should be considered. Two important aspects of this
relationship are:

• The use of RDF data as resources

• The creation of RDF data by evaluating non-RDF resources

XQuery and SPARQL
RDF data are queried using a special query language, SPARQL (12). A special type of web service,
called SPARQL endpoint, receives SPARQL queries and returns the query result in a format of
choice (e.g. XML/RDF (11) or Turtle (10)). SPARQL endpoints should be regarded as a particular
kind of resources. Unfortunately, there is currently very little built-in support for XQuery access
to SPARQL endpoints. As SPARQL endpoints are usually accessible via HTTP, the EXPath-
defined http:send-request function can be used for pulling SPARQL result sets into XQuery
processing.

It should be noted that XQuery (as any other programming language) might put SPARQL resources
to special uses: it might query triple stores in order to discover the URIs of interesting (non-RDF)
resources and subsequently retrieve these resources. This usage pattern – “SPARQL as a resource
broker” - requires the availability of appropriate triple stores, which might be on purpose created as
part of an infrastructure supporting data integration at a large scale. We regard this as an interesting
approach, to be considered by organizations maintaining many and heterogeneous data resources. A
seamless integration of SPARQL-based resource access into XQuery might be achieved along the lines
described in (7), which provide a generic model for integrating non-XML technologies as resource
brokers into XQuery.

XQuery as a triple factory
In earlier sections we discussed the excellent capabilities of XQuery for navigation and the
construction of information. These capabilities can be leveraged for the production of RDF triples from
XML data: XQuery can be used as a powerful triple factory. In this section, we propose a generic model
of the transformation of XML resources into a triple set. The model reduces the precise specification
of such a transformation to a small number of XQuery expressions, each executing a particular sub
task which the model integrates into an overall process of transformation.

So let us consider the goal of transforming XML resources into a set of RDF triples. In this scenario we
can assume that the subject and the object of a triple are both related to XML nodes, and this enables
us to view the creation of triples as a combination of navigation and the evaluation of expressions
mapping nodes to URIs and values. Generally speaking, the subject of a triple is a resource which is
represented by one or more subject-backing nodes. Similarly, the object URI or value is derived from
one or more object-backing nodes. Subject-backing nodes are found by navigation starting at the
document roots, and object-backing nodes are found by navigation starting at subject-backing nodes.
Schematically:

21

XQuery as a data
integration language

 subject predicate object
 ^ ^
 evaluation | | evaluation
 | navigation(+grouping)#2 |
 subject-backing nodes => object-backing nodes
 ^
 | navigation(+grouping)#1
 |
 document roots

Inspecting the two navigations more closely – (1) document roots to subject-backing nodes, (2) subject-
backing nodes to object-backing nodes – we observe that they comprise an expression yielding nodes
and an optional grouping of these nodes. The grouping of subject-backing nodes becomes necessary
if we deal with subjects which have more than one subject-backing node. In general, the navigation
step involved in finding the subject-backing nodes yields the union of all subject-backing nodes. In
most cases each of these nodes serves as the single subject-backing node of a distinct subject, and
grouping is not necessary. But if some subjects correspond to several subject-backing nodes, we must
partition the union of all subject-backing nodes into subsets corresponding to distinct subjects, and we
can define this partitioning by an expression used in a group by clause of a FLWOR expression
iterating over the union of all subject-backing nodes:

 for $node in $allSubjectBackingNodes
 group by $key := SUBJECT_GROUPING_EXPRESSION
 return array{$node}

Similar considerations apply to the navigation yielding object-backing nodes. The navigation step
yields for each individual subject (represented by one or several subject-backing nodes) the union of
all object-backing nodes, and in the common case each node represents the single object-backing node
of a distinct object. If some objects are backed by several nodes, we partition the union of nodes with
the help of a group by expression:

 for $node in $allObjectBackingNodes
 group by $key := OBJECT_GROUPING_EXPRESSION
 return array{$node}

To illustrate the concept of an optional grouping, consider a transformation of XSD documents into
(a) a set of triples describing schema elements, as well as (b) a second set of triples describing target
namespaces. The subject-backing node of a schema element is the schema element itself, and the
subject-backing nodes are obtained by applying to each input document the expression

 xs:schema

Each node thus obtained represents a distinct subject, and grouping of subject-backing nodes is not
required. The subject-backing nodes of a target namespace, on the other hand, comprise all schema
elements sharing the target namespace. In this case, the subject-backing nodes are obtained in two
steps, a navigation step and a grouping step. First, the union of all subject-backing nodes is obtained
by applying again to each input document the expression

 xs:schema

These nodes are then grouped, using the target namespace as a grouping key. Assuming that the schema
elements are bound to a variable $node, the grouping expression is then:

 $node/@targetNamespace

22

XQuery as a data
integration language

To summarize, subject-backing nodes and object-backing nodes are determined with the help of four
expressions, two of which are optional:

• subject-provider expression, evaluated in the context of document roots, yielding the union of all
subject-backing nodes

• subject-grouper expression, used in a group by clause in order to group subject-backing nodes

• object-provider expression, evaluated in the context of an individual subject's subject-backing
nodes, yielding for that subject the union of all object-backing nodes

• object-grouper expression, used in a group by clause in order to group object-backing nodes

The construction of triples requires yet a mapping of subject-backing nodes to a subject URI, and a
mapping of object-backing nodes to an object URI or an object value. The general model therefore
includes three more expressions:

• subject-uri-constructor expression, evaluated in the context of an individual subject's subject-
backing nodes and yielding the subject URI

• object-uri-constructor expression, evaluated in the context of an individual object's object-backing
nodes and yielding the object URI (if the object is a URI, rather than a value)

• object-value-constructor expression, evaluated in the context of an individual object's object-
backing nodes and yielding the object value (if the object is a value, rather than a URI)

A problem should be acknowledged. The mapping of nodes to URIs may not be possible if only relying
on the content of the input documents. For example, nodes may be assigned URIs containing a counter
whose value is determined by incrementing the current maximum value, which cannot be derived from
document contents. A general model of transforming XML documents into triple sets can take this
into account by assuming the availability of two XPath functions:

 subjectUriConstructor($type as xs:anyUri, $backingNodes as node()*) as xs:anyUri
 objectUriConstructor ($type as xs:anyUri, $backingNodes as node()*) as xs:anyUri

Up to this point we have considered a set of triples which describe a set of similar subject resources
in a uniform way. The subject resources are assumed to

• have the same type (RDF type)

• have subject-backing nodes reached by the same navigation (starting at document roots)

• have the same mapping of subject-backing nodes to subject URIs

• have the same set of (considered) predicates

• have for each (considered) predicate the same navigation to object-backing nodes

• have for each (considered) predicate the same mapping of object-backing nodes to an object URI
or value

The construction of such a coherent set of triples can be specified by a set of URIs and XQuery
expressions:

• RDF type of the subject resources (a URI)

• subject-provider expression

• subject-grouper expression (optional)

• subject-uri-constructor

23

XQuery as a data
integration language

• a set of predicate URIs

• for each predicate URI:

• object-provider expression

• object-grouper expression (optional)

• object-uri-constructor or object-value-constructor

Such an entity of information we call a triple set constructor. The generic model of an XML to RDF
transformation assumes a configuration which consists of one or more triple set constructors. Such a
configuration we call a triple factory definition.

Our model of transforming XML documents into triple sets is completed by

• an XML schema defining the XML representation of a triple factory definition

• further information concerning the various expressions of a triple set constructor, in particular:

• the dynamic context in which the expression is evaluated

• context item

• variable bindings

• trigger information – the expression is evaluated once per which entity

The following listing shows an example of a triple factory definition. It specifies the creation of a a
set of triples describing the xs:schema elements found in a set of XSDs. The triple set constructor
makes each xs:schema element the subject of various triples providing target namespace (predicate
x:tns), document URI (predicate x:docURI), imported schemas (predicate x:imports) and
other properties.

<tripleFactory prefixes="x:http://example.org/rdf/xsd#"
 xmlns="http://www.xquery-rdf.org">
 <!-- triple factory definition containing a single triple set constructor;
 defines triples describing the xs:schema elements found in a set
 of input documents (XSDs) -->
 <tripleSet subjectProvider="/xs:schema"
 subjectUri="$subjectUriConstructor()"
 type="x:schema">
 <predicates>
 <predicate uri="x:tns"
 objectProvider="@targetNamespace"
 objectValue="string(.)"/>
 <predicate uri="x:docURI"
 objectProvider="root()"
 objectValue="document-uri(.)"/>
 <predicate uri="x:imports"
 objectProvider="xs:import"
 objectUri="$objectUriConstructor()"/>
 <predicate uri="x:element"
 objectProvider=".//xs:element"
 objectURI="$objectUriConstructor()"/>
 <predicate uri="x:attribute"
 objectProvider=".//xs:attribute"
 objectURI="$objectUriConstructor()"/>
 <predicate uri="x:type"

24

XQuery as a data
integration language

 objectProvider=".//(xs:simpleType, xs:complexType)"
 objectURI="$objectUriConstructor()"/>
 <predicate uri="x:group"
 objectProvider="xs:group"
 objectURI="$objectUriConstructor()"/>
 <predicate uri="x:attributeGroup"
 objectProvider="xs:attributeGroup"
 objectURI="$objectUriConstructor()"/>
 </predicates>
 </tripleSet>
</tripleFactory>

A triple factory definition is essentially a collection of XQuery expressions playing particular roles in
the production of triples. There are seven different roles, and details about each one are provided by
Appendix A, Triple set construction expressions.

Integration issues
The exceptional ability of XQuery to express, filter and construct information is based on a peculiar
processing model, which also implies serious limitations concerning what can be achieved using
XQuery. The main limitations are

• The snapshot abstraction

• The inherent scaling problem

Issue: the snapshot model
The processing model of XQuery excludes changes of state. The processing model treats the sum
total of accessible information – the system state - as a single snapshot. A query cannot, for example,
first write a file and “later” read it – strictly speaking, there is no “before” or “after”, there is only a
“now”. In principle, this would also preclude the possibility of first opening a data base connection,
then using it, then closing the connection. In practice, however, there is a way around this limitation: if
one expression E2 consumes as input a value supplied by another expression E1, then for all practical
purposes E1 is evaluated before E2. This can be used deliberately by the “token pattern”:

 let $conn := foo:openConnection(…)
 let $result := foo:search($conn, …)

In this example, foo:search is evaluated after foo:openConnection, not because its let
clause follows the other let clause – but because foo:search cannot be evaluated without the
value of foo:openConnection – provided the code of foo:search really uses the input
parameter.

A complex task of data integration will often require distinct phases, each one consisting of many
operations, where one phase can only be executed when another phase is completely finished. In such
scenarios, the ability to control sequence will quickly reach its limits, and the task cannot be solved
by a single XQuery program. But if there are several queries, they cannot be bound together by yet
another query, because this would effectively mean a single query again. Therefore it is not possible
to implement multiple phases of state change using XQuery alone – some non-XQuery program must
be in charge of calling the XQuery programs and orchestrating them. This limitation will often apply
to typical scenarios of data integration.

Issue: scaling problems
The amazing capability of navigating trees and forests of information presupposes that those trees have
been constructed completely and before the navigation starts. As the construction of trees is costly in

25

XQuery as a data
integration language

terms of memory and processing time, this can easily lead to fierce scaling problems. One solution
consists in the use of XML data bases, which contain persistent representations of node trees, enabling
navigation without parsing at navigation time. Another approach is the use of p-collections as described
in (7). But it must be kept in mind that especially the capability of bulk navigation – searching items
in a large number of trees - may in some situations be only a theoretical possibility.

XQuery as a data integration language -
conclusions

Our view of the XQuery language is best captured by an image – the image of a person, its natural
gifts, its education and its entry into professional life. Using this image, XQuery was born with very
particular native gifts: to express information, find it and recombine it into new information. The gifts
are amazing, but not very useful unless education broadens the view of the world and the scope of
subject matter to which the gifts can be applied. Considering XQuery, the education includes above
all the introduction to other, non-XML media types and to other resource access protocols than file
and plain HTTP GET. As of version 3.1, XQuery has acquired a level of education that enables us to
apply those natural gifts at a different scale than in the beginning. If the exceptional ability to express,
find and recombine information can be evenly applied in a heterogeneous datascape, at an expanding
scale – to which more media types and more access protocols are being added – the XQuery language
becomes increasingly appropriate for integrating information. Version 3.1 has lead the language to a
point where it seems legitimate to ask whether data integration might become a key field of using the
language, if not its true profession.

A. Triple set construction expressions
(the section called “XQuery as a triple factory”) defines a generic model for the transformation of
XML documents into triple sets. The model introduces seven kinds of XQuery expressions used as
building blocks of the specification of a transformation. This appendix provides additional details
about the expression kinds.

Table A.1.

subject-provider-expression

Property Value
owned by a triple set constructor
trigger evaluated once for each document in the set of

input documents
value a sequence of nodes which is added to the union

of all subject-backing nodes
context item an input document
context variables $documents: the set of all input documents

Table A.2.

subject-grouper-expression

Property Value
owned by a triple set constructor
trigger evaluated once
value used as a group key when grouping

the concatenated values of {subject-provider-

26

XQuery as a data
integration language

Property Value
expression} into sets of subject-backing nodes
(one set per subject)

context item -
context variables $documents: the set of all input documents

$instance: a single node from the concatenated
values of {subject-provider-expression}

Table A.3.

subject-uri-expression

Property Value
owned by a triple set constructor
trigger evaluated once for each subject resource
value the URI of this subject
context item $sbn[1] (the first subject-backing node of this

subject resource)
context variables $documents: the set of all input documents

$sbn: subject-backing nodes of this subject
resource

Table A.4.

object-provider-expression

Property Value
owned by a predicate descriptor
trigger evaluated once for each subject resource
value a sequence of nodes which is added to the union of

all object-backing nodes for this subject resource
and this predicate

context item $sbn[1] (the first subject-backing node of this
subject resource)

context variables $documents: the set of all input documents
$sbn: subject-backing nodes of this subject
resource

Table A.5.

object-grouper-expression

Property Value
owned by a predicate descriptor
trigger evaluated once for each subject resource
value used as a group key when grouping

the concatenated values of {object-provider-
expression} into sets of object-backing nodes (one
set per object)

context item -

27

XQuery as a data
integration language

Property Value
context variables $documents: the set of all input documents

$sbn: subject-backing nodes of this subject
resource
$instance: a single node from the concatenated
values of {object-provider-expression}

Table A.6.

object-uri-expression

Property Value
owned by a predicate descriptor
trigger evaluated once for each subject resource (if

predicate URI-valued)
value the URI of the object backed by $obn
context item $obn[1]: (the first object-backing node of this

subject resource and for this predicate)
context variables $documents: the set of all input documents

$obn: the object-backing nodes of this subject
resource and for this predicate

Table A.7.

object-value-expression

Property Value
owned by a predicate descriptor
trigger evaluated once for each subject resource (if

predicate literal-valued)
value the value of the object backed by $obn
context item $obn[1]: (the first object-backing node of this

subject resource and for this predicate)
context variables $documents: the set of all input documents

$obn: the object-backing nodes of this subject
resource and for this predicate

Bibliography
[1] BaseX - an open source XML database. Homepage. http://basex.org

[2] eXistdb - an open source XML database. Homepage. http://exist-db.org/exist/apps/homepage/index.html

[3] EXPath Community Group. Homepage. https://www.w3.org/community/expath/

[4] Gruen, Christian et al, eds. File Module 1.0 ExPath Module 20 February 2015. http://expath.org/spec/file/1.0

[5] Bray, Tim, ed. The JavaScript Object Notation (JSON) Data Interchange Format. Request for Comments: 7159.
http://http://www.rfc-editor.org/rfc/rfc7159.txt

[6] Apache JMeter. Homepage. http://jmeter.apache.org/

28

http://basex.org
http://exist-db.org/exist/apps/homepage/index.html
https://www.w3.org/community/expath/
http://expath.org/spec/file/1.0
http://http://www.rfc-editor.org/rfc/rfc7159.txt
http://jmeter.apache.org/

XQuery as a data
integration language

[7] Rennau, Hans-Juergen. Node search preceding node construction - XQuery inviting non-XML technologies.
XML Prague 2015, Conference Proceedings, p. 87-106. http://archive.xmlprague.cz/2015/files/
xmlprague-2015-proceedings.pdf.

[8] Retter, Adam. RESTful XQuery. XML Prague 2012, Conference Proceedings, p. 91-124. http://
archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf.

[9] Saxonica - XSLT and XQuery processing. Homepage. www.saxonica.com

[10] Beckett, David et al, eds. RDF 1.1 Turtle. Terse RDF Triple Language. W3C Recommendation 25 February
2014. http://www.w3.org/TR/turtle/

[11] Gandon, Fabien and Guus Schreiber, eds. RDF 1.1 XML Syntax. W3C Recommendation 25 February 2014.
http://www.w3.org/TR/rdf-syntax-grammar/

[12] Harris, Steve and Andy Seaborne, eds. SPARQL 1.1 Query Language. W3C Recommendation 21 March
2013. http://www.w3.org/TR/sparql11-query/

[13] Kay, Michael, ed. XPath and XQuery Functions and Operators 3.1. W3C Candidate Recommendation 18
December 2014. http://www.w3.org/TR/xpath-functions-31/

[14] Robie, Jonathan et al, eds. XQuery 3.0: An XML Query Language. W3C Recommendation 8 April 2014.
http://www.w3.org/TR/xquery-30/

[15] Robie, Jonathan, Michael Dyck, eds. XQuery 3.1: An XML Query Language. W3C Candidate
Recommendation 18 December 2014. http://www.w3.org/TR/xquery-31/

[16] Walsh, Norman et al, eds. XQuery and XPath Data Model 3.0. W3C Recommendation 8. April 2014 http://
www.w3.org/TR/xpath-datamodel-30/

[17] Snelson, John and Jim Melton, eds. XQuery Update Facility 3.0. W3C Last Call Working Draft 19 February
2015. http://www.w3.org/TR/xquery-update-30/

[18] Thompson, Henry S. et al, eds. XML Schema Part 1: Structures Second Edition. W3C Recommendation 28
October 2004. http://www.w3.org/TR/xmlschema-1/

[19] Kay, Michael, ed. XSL Transformations (XSLT) Version 3.0. W3C Last Call Working Draft 2 October 2014.
http://www.w3.org/TR/xslt-30/

29

http://archive.xmlprague.cz/2015/files/xmlprague-2015-proceedings.pdf
http://archive.xmlprague.cz/2015/files/xmlprague-2015-proceedings.pdf
http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
www.saxonica.com
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/xpath-functions-31/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xquery-31/
http://www.w3.org/TR/xpath-datamodel-30/
http://www.w3.org/TR/xpath-datamodel-30/
http://www.w3.org/TR/xquery-update-30/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xslt-30/

	XQuery as a data integration language
	Table of Contents
	Introduction
	XQuery, seen from the outside
	Basic facts about XQuery
	XQuery as an information oriented language
	XQuery as an aggregation-friendly language
	Expanding scope of resource access

	The integration of XML data
	Finding information
	The XPath navigation model
	Bulk navigation
	Boundless navigation
	Compound navigation (FLWOR)
	Aggregating information (FLWOR/group by)

	Constructing information
	Embedded expressions
	Transformation
	Modification

	Resource exploration
	Resource validation
	Schema validation
	Bulk schema validation
	Expression-based validation

	Resource access
	Introduction
	Resource access patterns
	Scopes of availability
	Resource access functions
	Standard versus extension functions

	XDM binding
	Introduction
	XDM binding, XDM equality
	XML binding

	The role of REST
	XQuery and RDF
	RDF and data integration
	XQuery and SPARQL
	XQuery as a triple factory

	Integration issues
	Issue: the snapshot model
	Issue: scaling problems

	XQuery as a data integration language - conclusions
	A. Triple set construction expressions
	Bibliography

