
RDFe – expression-based mapping of
XML documents to RDF triples

Hans-Juergen Rennau, parsQube GmbH
<hans-juergen.rennau@parsqube.de>

Abstract

RDFe is an XML language for mapping XML documents to RDF triples. The name suffix “e” stands for
expression and hints at the key concept, which is the use of XPath expressions mapping semantic relationships
between RDF subjects and objects to structural relationships between XML nodes. More precisely, RDF
properties are represented by XPath expressions evaluated in the context of an XML node which represents the
triple subject and yielding XDM value items which represent the triple object. The expressiveness of XPath
version 3.1 enables the semantic interpretation of XML resources of any structure and content. Required
XPath expressions can be simplified by the definition of a dynamic context whose variables and functions
are referenced by the expressions. Semantic relationships can be across document boundaries, and new XML
document URIs can be discovered in the content of input documents, so that RDFe is capable of gleaning linked
data. As XPath extension functions may support the parsing of non-XML resources (JSON, CSV, HTML),
RDFe can also be used for mapping mixtures of XML and non-XML resources to RDF graphs.

Table of Contents
Introduction .. 2
RDFe example .. 2

Getting started .. 2
Linking resources .. 5
Adding a dynamic context .. 6

RDFe language ... 7
RDFe model components .. 8

Semantic extension .. 9
Semantic map ... 9
Resource model .. 9
Property model .. 10
Context constructor .. 11

Evaluation .. 11
Input / Ouput .. 11
Hybrid triples and preliminary resource description ... 12
Asserted target nodes ... 12
Processing steps .. 13

RDFe for non-XML resources ... 13
Conformance .. 13

Minimal conformance ... 13
Optional feature: XQuery Expressions Feature .. 14
Implementation-defined extension functions ... 14

Implementation .. 14
Discussion .. 14
A. Processing semantic maps - formal definition ... 16

Section 1: Top-level rule ... 16
Section 2: Resolving an rdfee to a set of triples .. 16
Section 3: Resolving input documents to a set of rdfees .. 17
Section 4: auxilliary rules ... 17

Bibliography ... 18

1

RDFe – expression-based mapping
of XML documents to RDF triples

Introduction
XML is an ideal data source for the construction of RDF triples: information is distributed over
named items which are arranged in trees identified by document URIs. We are dealing with a forest
of information in which every item can be unambiguously addressed and viewed as connected to any
other item (as well as sets of items) by a structural relationship which may be precisely and succinctly
expressed using the XPath language [9]. XPath creates an unrivalled inter-connectivity of information
pervading any set of XML documents of any content and size. RDF triples describing a resource thus
may be obtained by (1) selecting within the XML forest an XML node serving as the representation
of the resource, (2) mapping each property IRI to an XPath expression reaching out into the forest
and returning the nodes representing the property values. To unleash this potential, a model is needed
for translating semantic relationships between RDF subject and object into structural relationships
between XML nodes representing subject and object. The model should focus on expressions as the
basic units defining a mapping – not on names, as done by JSON-LD [4], and not on additional markup
as done by RDFa [6]. This paper proproses RDFe, an expression-based model for mapping XML to
RDF.

RDFe example
This section introduces RDFe by building an example in several steps.

Getting started
Consider an XML document describing drugs (contents taken from drugbank [2]):

<drugs xmlns="http://www.drugbank.ca">
 <drug type="biotech" created="2005-06-13" updated="2018-07-02">
 <drugbank-id primary="true">DB00001</drugbank-id>
 <drugbank-id>BTD00024</drugbank-id>
 <drugbank-id>BIOD00024</drugbank-id>
 <name>Lepirudin</name>
 <!-- more content here -->
 <pathways>
 <pathway>
 <!-- more content here -->
 <enzymes>
 <uniprot-id>P00734</uniprot-id>
 <uniprot-id>P00748</uniprot-id>
 <uniprot-id>P02452</uniprot-id>
 <!-- more content follows -->
 </enzymes>
 </pathway>
 </pathways>
 <!-- more content here -->
 </drug>
 <!-- more drugs here -->
</drugs>

We want to map parts of these descriptions to an RDF representation. First goals:

• Assign an IRI to each drug
• Construct triples describing the drug

The details are outlined in the table below. Within XPath expressions, variable $drug references the
XML element representing the resource.

2

RDFe – expression-based mapping
of XML documents to RDF triples

Table 1. A simple model deriving RDF resource descriptions from XML data.

Resource IRI expression (XPath)
$drug/db:drugbank-id[@primary = 'true']/concat('drug:', .)

Property IRI Property type Property value expression (XPath)

rdf:type xs:string 'ont:drug'
ont:name xs:string $drug/name
ont:updated xs:date $drug/@updated
ont:drugbank-id xs:string $drug/db:drugbank-id[@primary = 'true']
ont:drugbank-altid xs:string $drug/db:drugbank-id[not(@primary = 'true')]
ont:enzyme IRI $drug//db:enzymes/db:uniprot-id/concat('uniprot:', .)

This model is easily translated into an RDFe document, also called a semantic map:

<re:semanticMap iri="http://example.com/semap/drugbank/"
 targetNamespace="http://www.drugbank.ca"
 targetName="drugs"
 xmlns:re="http://www.rdfe.org/ns/model"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:db="http://www.drugbank.ca">

 <re:namespace iri="http://example.com/resource/drug/" prefix="drug"/>
 <re:namespace iri="http://example.com/ontology/drugbank/" prefix="ont"/>
 <re:namespace iri="http://www.w3.org/2000/01/rdf-schema#" prefix="rdfs"/>
 <re:namespace iri="http://bio2rdf.org/uniprot:" prefix="uniprot"/>

 <re:resource modelID="drug"
 assertedTargetNodes="/db:drugs/db:drug"
 targetNodeNamespace="http://www.drugbank.ca"
 targetNodeName="drug"
 iri="db:drugbank-id[@primary = 'true']/concat('drug:', .)"
 type="ont:drug">
 <re:property iri="rdfs:label"
 value="db:name"
 type="xs:string"/>
 <re:property iri="ont:updated"
 value="@updated"
 type="xs:date"/>
 <re:property iri="ont:drugbank-id"
 value="db:drugbank-id[@primary = 'true']"
 type="xs:string"/>
 <re:property iri="ont:drugbank-alt-id"
 value="db:drugbank-id[not(@primary = 'true')]"
 type="xs:string"/>
 <re:property iri="ont:enzyme"
 value=".//db:enzymes/db:uniprot-id/concat('uniprot:', .)"
 type="#iri"/>
 </re:resource>

</re:semanticMap>

The triples are generated by an RDFe processor, to which we pass the XML document and the
semantic map. Command line invocation:

 shax "rdfe?dox=drugs.xml,semap=drugbank.rdfe.xml"

3

RDFe – expression-based mapping
of XML documents to RDF triples

The result is a set of RDF triples in Turtle [7] syntax:

@prefix drug: <http://example.com/resource/drug/> .
@prefix ont: <http://example.com/ontology/drugbank/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix uniprot: <http://bio2rdf.org/uniprot:> .

drug:DB00001
 rdf:type ont:drug ;
 rdfs:label "Lepirudin" ;
 ont:updated "2018-07-02"^^xs:date ;
 ont:drugbank-id "DB00001" ;
 ont:drugbank-alt-id "BTD00024" ;
 ont:drugbank-alt-id "BIOD00024" ;
 ont:enzyme uniprot:P00734 ;
 ont:enzyme uniprot:P00748 ;
 ont:enzyme uniprot:P02452 ;
 …
drug:DB00002
 rdf:type ont:drug ;
 …
drug:DB00003
 rdf:type ont:drug ;
 …
…

Some explanations should enable a basic understanding of how the semantic map controls the output.
The basic building block of a semantic map is a resource model. It defines how to construct the triples
describing a resource represented by an XML node:

<re:resource modelID="drug"
 assertedTargetNodes="/db:drugs/db:drug"
 iri="db:drugbank-id[@primary eq 'true']/concat('drug:', .)"
 type="ont:drug">
 <re:property iri="rdfs:label"
 value="db:name"
 type="xs:string"/>
 <!-- more property models here -->
</re:resource>

The @iri attribute on <resource> provides an XPath expression yielding the resource IRI. The
expression is evaluated in the context of the XML node representing the resource. Note how the
expression language XPath is used in order to describe the IRI as a concatenation of a literal prefix and
a data-dependent suffix. Every node returned by the expression in @assertedTargetNodes, evaluated
in the context of the input document, is mapped to a resource description as specified by this resource
model element.

Each <property> child element adds to the resource model a property model. It describes how to
construct triples with a particular property IRI. The property IRI is given by @iri, and the property
values are obtained by evaluating the expression in @value, using the node representing the resource
as context node. (In our example, the value expressions are evaluated in the context of a <drug>
element.) As the examples show, the XPath language may be used freely, for example combining
navigation with other operations like concatenation. The datatype of the property values is specified by
the @type attribute on <property>. The special value #iri signals that the value is an IRI, rather
than a typed literal. Another special value, #resource, will be explained in the following section.

4

RDFe – expression-based mapping
of XML documents to RDF triples

Linking resources
Our drug document references articles:

<drugs xmlns="http://www.drugbank.ca">
 <drug type="biotech" created="2005-06-13" updated="2018-07-02">
 <drugbank-id primary="true">DB00001</drugbank-id>
 <!-- more content here -->
 <general-references>
 <articles>
 <article>
 <pubmed-id>16244762</pubmed-id>
 <citation>
 Smythe MA, Stephens JL, Koerber JM, Mattson JC: A c…</citation>
 </article>
 <!-- more articles here -->
 </articles>
 </general-references>
 <!-- more content here -->
</drugs>

RDF is about connecting resources, and therefore our RDF data will be more valuable if the description
of a drug references article IRIs which give access to article resource descriptions - rather than
including properties with literal values which represent properties of the article in question, like its
title and authors.

Assume we have access to a document describing articles:

<articles>
 <article>
 <pubmed-id>16244762</pubmed-id>
 <url>https://doi.org/10.1177/107602960501100403</url>
 <doi>10.1177/107602960501100403</doi>
 <authors>
 <author>Smythe MA</author>
 <author>Stephens JL</author>
 <author>Koerber JM</author>
 <author>Mattson JC</author>
 </authors>
 <title>A comparison of lepirudin and argatroban outcomes</title>
 <keywords>
 <keyword>Argatroban</keyword>
 <keyword>Lepirudin</keyword>
 <keyword>Direct thrombin inhibitors</keyword>
 </keywords>
 <citation>Smythe MA, Stephens JL, Koerber JM, Mattson JC: A ...</citation>
 <abstract> Although both argatroban and lepirudin are used ...</abstract>
 </article>
 <!—more articles here -->
</articles>

We write a second semantic map for this document about articles:

<re:semanticMap iri="http://example.com/semap/articles/"
 targetNamespace="" targetName="articles" …>
 <re:namespace iri="http://example.com/resource/article/" prefix="art"/>
 <!-- more namespace descriptors here -->
 <re:resource modelID="article" iri="pubmed-id/concat('art:', .)"
 targetNodeNamespace=""

5

RDFe – expression-based mapping
of XML documents to RDF triples

 targetNodeName="article"
 type="ont:article">
 <re:property iri="ont:doi" value="doi" type="xs:string"/>
 <re:property iri="ont:url" value="url" type="xs:string"/>
 <re:property iri="ont:author" value=".//author" list="true" type="xs:string"/>
 <re:property iri="ont:title" value="title" type="xs:string"/>
 <re:property iri="ont:keyword" value="keywords/keyword" type="xs:string"/>
 <re:property iri="ont:abstract" value="abstract" type="xs:string"/>
 <re:property iri="ont:citation" value="citation" type="xs:string"/>
 </re:resource>
</re:semanticMap/>

and we extend the resource model of a drug by a property referencing the article resource, relying on
its XML representation provided by an <article> element:

<re:property iri="ont:ref-article"
 value="for $id in .//db:article/db:pubmed-id return
 doc('/ress/drugbank/articles.xml')//article[pubmed-id eq $id]"
 type="#resource"/>

The value expression fetches the values of <pubmed-id> children of <article> elements
contained by the <drug> element, and it uses these values in order to navigate to the corresponding
<article> element in a different document. This document need not be provided by the initial
input – documents can be discovered during processing. While the items obtained from the value
expression are <article> elements, the triple objects must be article IRIs giving access to article
resource descriptions. Therefore two things must be accomplished: first, the output must include triples
describing the referenced articles; second, the ont:ref-article property of a drug must have an
object which is the article IRI used as the subject of triples describing this article. The article IRI, as
well as the triples describing the article are obtained by applying the article resource model to the
article element. All this is accomplished by the RDFe processor whenever it detects the property type
#resource. Our output is extended accordingly:

drug:DB00001 a ont:drug ;
 rdfs:label "Lepirudin" ;
 …
 ont:ref-article art:16244762 ;
 …
art:16244762 a ont:article ;
 ont:abstract "Although both argatroban and lepirudin are used for ..." ;
 ont:author "Stephens JL" , "Koerber JM" , "Mattson JC" , "Smythe MA" ;
 ont:citation "Smythe MA, Stephens JL, Koerber JM, Mattson JC: A com … " ;
 ont:doi "10.1177/107602960501100403" ;
 ont:keyword "Argatroban" , "Lepirudin" , "Direct thrombin inhibitors" ;
 ont:title "A comparison of lepirudin and argatroban outcomes" ;
 ont:url "https://doi.org/10.1177/107602960501100403" .

Adding a dynamic context
The property model which we just added to the resource model for drugs contains a “difficult” value
expression – an expression which is challenging to write, to read and to maintain:

 for $id in .//db:article/db:pubmed-id return
 doc('/products/drugbank/articles.xml')//article[pubmed-id eq $id]"

We can simplify the expression by defining a dynamic context and referencing a context variable. A
<context> element represents the constructor of a dynamic context:

<re:semanticMap iri="http://example.com/semap/drugbank/" …>
 ...
 <re:context>

6

RDFe – expression-based mapping
of XML documents to RDF triples

 <re:var name="articlesURI" value="'/products/drugbank/articles.xml'"/>
 <re:var name="articlesDoc" value="doc($articlesURI)"/>
 </re:context>
 …
</re:semanticMap>

The values of context variables are specified by XPath expressions. Their evaluation context is the
root element of an input document, so that variable values may reflect document contents. A context
constructor is evaluated once for each input document. The context variables are available in any
expression within the semantic map containing the context constructor (excepting expressions in
preceding siblings of the <var> element defining the variable). Now we can simplify our expression
to

 for $id in .//db:article/db:pubmed-id return
 $articlesDoc//article[pubmed-id eq $id]

As a context constructor may also define functions, we may further simplify the value expression by
turning the navigation to the appropriate <article> element into a function. The function is defined
by a <fun> child element of <context>. We define a function with a single formal parameter,
which is a pubmed ID:

<re:context>
 <re:var name="articlesURI" value="'/products/drugbank/articles.xml'"/>
 <re:var name="articlesDoc" value="doc($articlesURI)"/>
 <re:fun name="getArticleElem" params="id"
 code="$articlesDoc//article[pubmed-id eq $id]"/>
 </re:function>
</re:context>

Expressions in this semantic map can reference the function by the name getArticleElem. A new
version of the value expression is this:

 .//db:article/db:pubmed-id/$getArticleElem(.)

For each input document a distinct instance of the context is constructed, using the document
root as context node. This means that the context may reflect the contents of the input document.
The following example demonstrates the possibility: in order to avoid repeated navigation to the
<article> elements, we introduce a dictionary which maps all Pubmed IDs used in the input
document to <article> elements:

 <re:var name="articleElemDict"
 value="map:merge(distinct-values(//db:article/db:pubmed-id)
 ! map:entry(., $getArticleElem(.)))"/>

An updated version of the value expression takes advantage of the dictionary:

 .//db:article/db:pubmed-id/$articleElemDict(.)

The dictionary contains only those Pubmed IDs which are actually used in a particular input document.
For each input document, a distinct instance of the dictionary is constructed, which is bound to the
context variable $articleElemDict whenever data from that document are evaluated.

RDFe language
RDFe is an XML language for defining the mapping of XML documents to RDF triples. A mapping
is described by one or more RDFe documents. An RDFe document has a <semanticMap>
root element. All elements are in the namespace http://www.rdfe.org/ns/model and all
attributes are in no namespace. Document contents are constrained by an XSD (found here: [8], xsd
folder). The following treesheet representation [5] [13] of the schema uses the pseudo type re:XPATH
in order to indicate that a string must be a valid XPath expression, version 3.1 or higher.

7

RDFe – expression-based mapping
of XML documents to RDF triples

semanticMap
. @iri ty: xs:anyURI
. @targetNamespace ty: Union({xs:anyURI}, {xs:string: len=0},
 {xs:string: enum=(*)})
. @targetName ty: Union({xs:NCName}, {xs:string: enum=(*)})
. targetAssertion* ty: re:XPATH
. . @expr? ty: re:XPATH
. import*
. . @href ty: xs:anyURI
. namespace*
. . @iri ty: xs:anyURI
. . @prefix ty: xs:NCName
. context?
. . _choice_*
. . 1 var ty: re:XPATH
. . 1 . @name ty: xs:NCName
. . 1 . @value? ty: re:XPATH
. . 2 fun ty: re:XPATH
. . 2 . @name ty: xs:NCName
. . 2 . @params? ty: xs:string: pattern=#(\i\c*(\s*,\s*\i\c*)?)?#
. . 2 . @as? ty: xs:Name
. . 2 . @code? ty: re:XPATH
. resource*
. . @modelID ty: xs:NCName
. . @assertedTargetNodes? .. ty: re:XPATH
. . @iri? ty: re:XPATH
. . @type? ty: List(xs:Name)
. . @targetNodeNamespace? .. ty: Union({xs:anyURI}, {xs:string: len=0},
 {xs:string: enum=(*)})
. . @targetNodeName? ty: Union({xs:NCName}, {xs:string: enum=(*)})
. . targetNodeAssertion* ... ty: re:XPATH
. . . @expr? ty: re:XPATH
. . property*
. . . @iri ty: xs:anyURI
. . . @value ty: re:XPATH
. . . @type? ty: Union({xs:Name},
 {xs:string: enum=(#iri|#resource)})
. . . @list? ty: xs:boolean
. . . @objectModelID? ty: xs:Name
. . . @card? ty: xs:string: pattern=#[?*+]|\d+(-(\d+)?)?|-\d+#
. . . @reverse? ty: xs:boolean
. . . @lang? ty: re:XPATH
. . . valueItemCase*
. . . . @test ty: re:XPATH
. . . . @iri? ty: xs:anyURI
. . . . @value? ty: re:XPATH
. . . . @type? ty: Union({xs:Name},
 {xs:string: enum=(#iri|#resource)})
. . . . @list? ty: xs:boolean
. . . . @objectModelID? ... ty: xs:Name
. . . . @lang? ty: re:XPATH

RDFe model components
This section summarizes the main components of an RDFe based mapping model. Details of the XML
representation can be looked up in the treesheet representation shown in the preceding section.

8

RDFe – expression-based mapping
of XML documents to RDF triples

Semantic extension
A semantic extension is a set of one or more semantic maps, together defining a mapping of XML
documents to a set of RDF triples. A semantic extension comprises all semantic maps explicitly
provided as input for an instance of RDFe processing, as well as all maps directly or indirectly imported
by these (see below).

Semantic map
A semantic map is a specification how to map a class of XML documents (defined in terms of target
document constraints) to a set of RDF triples. It is represented by a <semanticMap> element and
comprises the components summarized below.

Table 2. Semantic map components and their XML representation.

Model component XML representation

Semantic map IRI @iri
Target document constraint

Target document namespace @targetNamespace
Target document local name @targetName
Target assertions <targetAssertion>

Semantic map imports <import>
RDF namespace bindings <namespace>
Context constructor <context>
Resource models <resource>

A semantic map IRI identifies a semantic map unambiguously. The map IRI should be independent
of the document URI.

The target document constraint is a set of conditions met by any XML document to which the semantic
map may be applied. The constraint enables a decision whether resource models from the semantic
map can be used in order to map nodes from a given XML document to RDF resource descriptions. A
target document assertion is an XPath expression, to be evaluated in the context of a document root.
A typical use of target document assertions is a check of the API or schema version indicated by an
attribute of the input document.

A semantic map may import other semantic maps. Import is transitive, so that any map reachable
through a chain of imports is treated as imported. Imported maps are added to the semantic extension,
and no distinction is made between imported maps and those which have been explicitly supplied as
input.

RDF namespace bindings define prefixes used in the output for representing IRI values in compact
form. Note that they are not used for resolving namespace prefixes used in XML names and
XPath expressions. During evaluation, XML prefixes are always resolved according to the in-scope
namespace bindings established by namespace declarations (xmlns).

Context constructor and resource models are described in subsequent sections.

Resource model
A resource model is a set of rules how to construct triples describing a resource which is viewed as
represented by a given XML node. A resource model is represented by a <resource> element and
comprises the components summarized below.

9

RDFe – expression-based mapping
of XML documents to RDF triples

Table 3. Resource model components and their XML representation.

Model component XML representation

Resource model ID @modelID
Resource IRI expression @iri
Target node assertion @assertedTargetNodes
Target node constraint

Target node namespace @targetNodeNamespace
Target node local name @targetNodeName
Target node assertions <targetNodeAssertion>

Resource type IRIs @type
Property models <property>

The resource model ID is used for purposes of cross reference. A resource model has an implicit
resource model IRI obtained by appending the resource model ID to the semantic map IRI (with a
hash character (“#”) inserted in between if the semantic map IRI does not end with “/” or “#”).

The resource IRI expression yields the IRI of the resource. The expression is evaluated using as context
item the XML node used as target of the resource model.

A target node assertion is an expression to be evaluated in the context of each input document passed to
an instance of RDFe processing. The expression yields a sequence of nodes which MUST be mapped
to RDF descriptions. Note that the processing result is not limited to these resource descriptions, as
further descriptions may be triggered as explained in the section called “Linking resources”.

A target node constraint is a set of conditions which is evaluated when selecting the resource model
which is appropriate for a given XML node. It is used in particular when a property model treats XML
nodes returned by a value expression as representations of an RDF description (for details see the
section called “Linking resources”).

Resource type IRIs identify the RDF types of the resource (rdf:type property values). The types
are specified as literal IRI values.

Property models are explained in the following section.

Property model
A property model is represented by a <property> child element of a <resource> element. The
following table summarizes the major model components.

Table 4. Property model components and their XML representation.

Model component XML representation

Property IRI @iri
Object value expression @value
Object type (IRI or token) @type
Object language tag @lang
Object resource model (IRI or ID) @objectModelID
RDF list flag @list
Reverse property flag @reverse
Conditional settings <valueItemCase>

10

RDFe – expression-based mapping
of XML documents to RDF triples

The property IRI defines the IRI of the property. It is specified as a literal value.

The object value expression yields XDM items [11] which are mapped to RDF terms in accordance
with the settings of the property model, e.g. the object type. For each term a triple is constructed, using
the term as object, a subject IRI obtained from the IRI expression of the containing resource model,
and a property IRI as specified.

The object type controls the mapping of the XDM items obtained from the object value expression to
RDF terms used as triple objects. The object type can be an XSD data type, the token #iri denoting
a resource IRI, or the token #resource. The latter token signals that the triple object is the subject
IRI used by the resource description obtained for the value item, which must be a node. The resource
description is the result of applying to the value node an appropriate resource model, which is either
explicitly specified (@objectModelID) or determined by matching the node against the target node
constraints of the available resource models.

The language tag is used to turn the object value into a language-tagged string.

The object resource model is evaluated in conjunction with object type #resource. It identifies
a resource model to be used when mapping value nodes yielded by the object value expression to
resource descriptions.

The RDF list flag indicates whether or not the RDF terms obtained from the object value expression
are arranged as an RDF list (default: no).

The reverse flag can indicate that the items obtained from the object value expression represent the
subjects, rather than objects, of the triples to be constructed, in which case the target node of the
containing resource model becomes the triple object.

Conditional settings is a container for settings (e.g. property IRI or object type IRI) applied only to
those value items which meet a condition. The condition is expressed by an XPath expression which
references the value item as an additional context variable (rdfe:value).

Context constructor
Using RDFe, the construction of RDF triples is based on the evaluation of XPath expressions.
Evaluation can be supported by an evaluation context consisting of variables and functions
accessible within the expression. The context is obtained from a context constructor represented by
a <context> element. A distinct instance of the context is constructed for each XML document
containing a node which is used as context node by an expression from the semantic map defining
the context. The context constructor is a collection of variable and function constructors. Variable
constructors associate a name with an XQuery expression providing the value. Function constructors
associate a name with an XQuery function defined in terms of parameter names, return value type
and an expression providing the function value. As the expressions used by the variable and function
constructors are evaluated in the context of the root element of the document in question, variable
values as well as function behaviour may reflect the contents of the document. Variable values may
have any type defined by the XDM data model, version 3.1 [11] (sequences of items which may
be atom, node, map, array or function). Context functions are called within expressions like normal
functions, yet provide behaviour defined by the semantic map and possibly dependent on document
contents.

Evaluation
Semantic maps are evaluated by an RDFe processor. This section describes the processing in an
informal way. See also Appendix A, Processing semantic maps - formal definition.

Input / Ouput
Processing input is

11

RDFe – expression-based mapping
of XML documents to RDF triples

• An initial set of XML documents
• A set of semantic map documents

Processing output is a set of RDF triples, usually designed to express semantic content of the XML
documents.

The set of contributing semantic maps consists of the set explicitly supplied, as well as all semantic
maps directly or indirectly imported by them.

The set of contributing XML documents is not limited to the initial input documents, as expressions
used to construct triples my access other documents by derefencing URIs found in documents or
semantic maps. This is an example of navigation into a document which may not have been part of
the initial set of input documents:

 <re:property iri="ont:country" type="#resource"
 value="country/@href/doc(.)//country"/>

RDFe thus supports a linked data view.

Hybrid triples and preliminary resource description
Understanding the processing of semantic maps is facilitated by the auxiliary concepts of a “hybrid
triple” and a “preliminary resource description”. When a property model uses the type specification
#resource, the nodes obtained from the object value expression of the property model are viewed as
XML nodes representing resources, and the triple objects are the IRIs of these resources. The resource
is identified by the combined identities of XML node and resource model to be used in order to map
the node to a resource description. When this resource has already been described in an earlier phase
of the evaluation, the IRI is available and the triple can be constructed. If the resource description has
not yet been created, the IRI is still unknown and the triple cannot yet be constructed. In this situation,
a hybrid triple is constructed, using the pair of XML node and resource model ID as object. A hybrid
triple is a preliminary representation of the triple eventually to be constructed. A resource description
is called preliminary or final, dependent on whether or not it contains hybrid triples. A preliminary
description is turned into a final description by creating for each hybrid triple a resource description and
replacing the hybrid triple object by the subject IRI used by that description. The resource description
created for the hybrid triple object may itself contain hybrid triples, but in any case it provides the IRI
required to finalize the hybrid triple currently processed. If the new resource description is preliminary,
it will be finalized in the same way, by creating for each hybrid triple yet another resource description
which also provides the required IRI. In general, the finalization of preliminary resource descriptions
is a recursive processing which ends when any new resource descriptions are final.

Asserted target nodes
The scope of processing is controlled by the asserted resource descriptions, the set of resource
descriptions which MUST be constructed, given a set of semantic maps and an initial set of XML
documents. Such a description is identified by an XML node representing the resource and a resource
model ID identifying the model to be used for mapping the node to an RDF description. (Note that for
a single XML node more than one mapping may be defined, that is, more than one resource model may
accept the same XML node as a target.) The asserted target nodes of a resource model are the XML
nodes to which the resource model must be applied in order to create all asserted resource descriptions
involving this resource model.

Any additional resource descriptions are only constructed if they are required in order to construct an
asserted resource description. An additional resource description is required if without this description
another description (asserted or itself additional) would be preliminary, that is, contain hybrid triples.
As the discovery of required resource descriptions may entail the discovery of further required resource
descriptions, the discovery process is recursive, as explained in the section called “Hybrid triples and
preliminary resource description”.

12

RDFe – expression-based mapping
of XML documents to RDF triples

The asserted target nodes of a resource model are determined by the target node assertion of the
resource model, an expression evaluated in the context of each initial XML document. Note that the
target node assertion is not applied to XML documents which do not belong to the initial set of XML
documents. Such additional documents contribute only additional resource descriptions, no asserted
resource descriptions. Initial documents, on the other hand, may contribute asserted and/or additional
descriptions.

Processing steps
The processing of semantic maps can now be described as a sequence of steps:

1. For each resource model identify its asserted target nodes.
2. For each asserted target node create a resource description (preliminary or final).
3. a. Map any hybrid triple object to a new resource description

b. Replace the hybrid triple object by the IRI provided by the new resource description
4. If any resource descriptions created in (3) contain hybrid triples, repeat (3)
5. The result is the set of all RDF triples created in steps (2) and (3).

For a formal definition of the processing see Appendix A, Processing semantic maps - formal
definition.

RDFe for non-XML resources
The core capability of the XPath language is the navigation of XDM node trees, and this navigation
is the “engine” of RDFe. The W3C recommendations defining XPath 3.1 ([9] and [10]) do not define
functions parsing HTML and CSV, and the function defined to parse JSON into node trees (fn:json-
to-xml) uses a generic vocabulary which makes navigation awkward. Implementation-defined
XPath extension functions, on the other hand, which parse JSON, HTML and CSV into navigation-
friendly node trees are common (e.g. BaseX [1] functions json:parse, html:parse and
csv:parse). An RDFe processor may offer implementation-defined support for such functions
and, by implication, also enable the mapping of non-XML resources to RDF triples.

Conformance
An RDFe processor translates an initial set of XML documents and a set of semantic maps to a set
of RDF triples.

Minimal conformance
Minimal conformance requires a processing as described in this paper. It includes support for XPath
3.1 expressions in any place of a semantic map where an XPath expression is expected:

• targetAssertion/@expr
• targetNodeAssertion/@expr
• var/@value
• fun/@code
• resource/@iri
• resource/@assertedTargetNodes
• property/@value
• property/@lang
• valueItemCase/@test
• valueItemCase/@value
• valueItemCase/@lang

13

RDFe – expression-based mapping
of XML documents to RDF triples

Optional feature: XQuery Expressions Feature
If an implementation provides the XQuery Expressions Feature, it must support XQuery 3.1 [12]
expressions in any place of a semantic map where an XPath expression is expected.

Implementation-defined extension functions
An implementation may support implementation-defined XPath extension functions. These may in
particular enable the parsing of non-XML resources into XDM node trees and thus support the RDFe-
defined mapping of non-XML resources to RDF triples.

Implementation
An implementation of an RDFe processor is available on github [8] (https://github.com/
hrennau/shax). The processor is provided as a command line tool (shax.bat, shax.sh).
Example call:

shax rdfe?dox=drug*.xml,semap=drugbank.*rdfe.xml

The implementation is written in XQuery and requires the use of the BaseX [1] XQuery processor. It
supports the XQuery Expressions Feature and all XPath extension functions defined by BaseX. This
includes functions for parsing JSON, HTML and CSV into node trees (json:parse, html:parse,
csv:parse). The implementation can therefore be used for mapping any mixture of XML, JSON,
HTML and CSV resources to an RDF graph.

Discussion
The purpose of RDFe is straightforward: to support the mapping of XML data to RDF data. Why
should one want to do this? In a “push scenario”, XML data are the primary reality, and RDF is a
means to augment it by an additional representation. In a “pull scenario”, an RDF model comes first,
and XML is a data source used for populating the model. Either way, the common denominator is
information content which may be represented in alternative ways, as a tree or as a graph. The potential
usefulness of RDFe (and other tools for mapping between tree and graph, like RDFa [6], JSON-LD
[4] and GraphQL [3]) depends on the possible benefits of switching between the two models. Such
benefits emerge from the complementary character of these alternatives.

A tree representation offers an optimal reduction of complexity, paying the price of a certain
arbitrariness. The reduction of complexity is far more obvious than the arbitrariness. Tree structure
decouples amount and complexity of information. A restaurant menu, for example, is a tree, with
inner nodes like starters, main courses, desserts and beverages, perhaps further inner nodes (meat, fish,
vegetarian, etc.) and leaf nodes which are priced offerings. Such representation fits the intended usage
so well that it looks natural. But when integrating the menu data from all restaurants in a town - how
to arrange intermediate nodes like location, the type of restaurant, price category, ratings, …? It may
also make sense to pull the menu items out of the menus, grouping by name of the dish.

A graph representation avoids arbitrariness by reducing information to an essence consisting of
resources, properties and relationships – yet pays the price of a certain unwieldiness. Graph data
are more difficult to understand and to use. If switching between tree and graph were an effortless
operation, what could be gained by “seeing” in a tree the graph which it represents, and by “seeing”
in a graph the trees which it can become?

14

RDFe – expression-based mapping
of XML documents to RDF triples

Figure 1. La clairvoyance, Rene Magritte, 1936

A painting suggesting a thorough consideration of the relationship between XML and RDF.

Think of two XML documents, one representing <painter> as child element of <painting>, the
other representing <painting> as child element of <painter>. From a tree-only perspective they
are stating different facts; from a graph-in-tree perspective, they are representing the same information,
which is about painters, paintings and a relationship between the two. Such intuitive insight may
be inferred by a machine if machine-readable instructions for translating both documents into RDF
are available. Interesting opportunities for data integration and quality control seem to emerge. A
document-to-document transformation, for example, may be checked for semantic consistency.

If the potential of using tree and graph quasi-simultaneously has hardly been explored, so far, a major
reason may be the high “resistence” which hinders a flow of information between the two models.
RDFe addresses one half of this problem, the direction tree-to-graph. RDFe is meant to complement
approaches dealing with the other half, e.g. GraphQL [3].

RDFe is committed to XPath as the language for expressing mappings within a forest of information.
The conclusion that RDFe is restricted to dealing with XML data would be a misunderstanding, due
to oversight that any tree structure (e.g. JSON and any table format) can be parsed into an XDM node
tree and thus become accessible to XPath navigation. Another error would be to think that RDFe is
restricted to connecting information within documents, as XPath offers excellent support for inter-
document navigation (see also the example given in the section called “Linking resources”). Contrary
to widespread views, XPath may be understood and used as a universal language for tree navigation -
and RDFe might accordingly serve as a general language for mapping information forest to RDF graph.

15

RDFe – expression-based mapping
of XML documents to RDF triples

A. Processing semantic maps - formal
definition

The processing of semantic maps is based on the building block of an RDFe expression (rdfee). An
rdfee is a pair consisting of an XML node and a resource model:

 rdfee ::= (xnode, rmodel)

The XML node is viewed as representing a resource, and the resource model defines how to translate
the XML node into an RDF resource description. An rdfee is an expression which can be resolved
to a set of tripels.

Resource models are contained by a semantic map. A set of semantic maps is called a semantic
extension (SE). A semantic extension is a function which maps a set of XML documents to a (possibly
empty) set of RDF triples:

 triple* = SE(document+)

The mapping is defined by the following rules, expressed in pseudo-code.

Section 1: Top-level rule
triples(docs, semaps) ::=
 for rdfee in rdfees(docs, semaps):
 rdfee-triples(rdfee, semaps)

Section 2: Resolving an rdfee to a set of triples
rdfee-triples(rdfee, semaps) ::=
 for pmodel in pmodels(rdfee.rmodel),
 for value in values(pmodel, rdfee.xnode):
 (
 resource-iri(rdfee.rmodel, rdfee.xnode),
 property-iri(pmodel, rdfee.xnode),
 triple-object(value, pmodel, semaps)
)

values(pmodel, xnode) ::=
 xpath(pmodel/@value, xnode, containing-semap(pmodel))

resource-iri(rmodel, xnode) ::=
 xpath(rmodel/@iri, xnode, containing-semap(rmodel))

property-iri(pmodel, xnode) ::=
 xpath(pmodel/@iri, xnode, containing-semap(pmodel))

triple-object(value, pmodel, semaps) ::=
 if object-type(value, pmodel) = "#resource":
 resource-iri(rmodel-for-xnode(value, pmodel), value)
 else:
 rdf-value(value, object-type(value, pmodel))

rmodel-for-xnode(xnode, pmodel, semaps) ::=
 if pmodel/@objectModelID:
 rmodel(pmodel/@objectModelID, semaps)
 else:

16

RDFe – expression-based mapping
of XML documents to RDF triples

 best-matching-rmodel-for-xnode(xnode, semaps)

best-matching-rmodel-for-xnode(xnode, semaps):
[Returns the rmodel which is matched by xnode and, if several rmodels
are matched, is deemed the best match; rules for “best match” may evolve;
current implementation treats the number of target node constraints as a
measure of priority – the better match is the rmodel with a greater number
of constraints; an explicit @priority à la XSLT is considered a future
option.]

object-type(value, pmodel):
[Returns the type to be used for a value obtained from the value expression;
value provided by pmodel/@type or by pmodel/valueItemCase/@type.]

rdf-value(value, type):
[Returns a literal with lexical form = string(value), datatype = type.]

Section 3: Resolving input documents to a set of
rdfees

rdfees(docs, semaps) ::=
 for rdfee in asserted-rdfees(docs, semaps):
 rdfee,
 required-rdfees(rdfee, semaps)

Sub section: asserted rdfees

asserted-rdfees(docs, semaps) ::=
 for doc in docs,
 for semap in semaps:
 if doc-matches-semap(doc, semap):
 for rmodel in rmodels(semap),
 for xnode in asserted-target-nodes(rmodel, doc):
 (xnode, rmodel)

asserted-target-nodes(rmodel, doc) ::=
 xpath(rmodel/@assertedTargetNodes, doc, containing-semap(rmodel))

Sub section: required rdfees

required-rdfees(rdfee, semaps) ::=
 for pmodel in pmodels(rdfee.rmodel),
 for value in values(pmodel, rdfee.xnode):
 required-rdfee(value, pmodel, semaps)

required-rdfee(xnode, pmodel, semaps) ::=
 if object-type(xnode, pmodel) = "#resource":
 let rmodel ::= rmodel-for-xnode(value, pmodel, semaps),
 let required-rdfee ::= (xnode, rmodel):
 required-rdfee,
 required-rdfees(required-rdfee, semaps)

Section 4: auxilliary rules
doc-matches-semap(doc, semap):
[Returns true if doc matches the target document constraints of semap.]

17

RDFe – expression-based mapping
of XML documents to RDF triples

xnode-matches-rmodel(xnode, rmodel):
[Returns true if xnode matches the target node constraints of rmodel.]

rmodel(rmodelID, semaps) ::=
[Returns the rmodel with an ID matching rmodelID.]

rmodels(semap) ::= semap//resource

pmodels(rmodel) ::= rmodel/property

containing-doc(xnode) ::= xnode/root()

containing-semap(semapNode) ::= semapNode/ancestor-or-self::semanticMap

xpath(xpath-expression, contextNode, semap) ::=
[Value of xpath-expression, evaluated as XPath expression using contextNode
as context node and a dynamic context including all in-scope variables from
the dynamic context constructed for the combination of the document
containing contextNode and semap.]

Bibliography
[1] BaseX. 2019. BaseX GmbH. http:// basex.org.

[2] DrugBank 5.0: a major update to the DrugBank database for 2018.. 2017. DS Wishart, YD Feunang, AC Guo,
EJ Lo, A Marcu, JR Grant, T Sajed, D Johnson, C Li, Z Sayeeda, N Assempour, I Iynkkaran, Y Liu, A
Maciejewski, N Gale, A Wilson, L Chin, R Cummings, D Le, A Pon, C Knox, and M Wilson. Nucleic
Acids Res. 2017 Nov 8.. https://www.drugbank.ca/. 10.1093/nar/gkx1037.

[3] GraphQL. 2017. Facebook Inc.. http://graphql.org/.

[4] JSON-LD 1.0. A JSON-based Serialization for Linked Data. 2014. World Wide Web Consortium (W3C). https://
www.w3.org/TR/json-ld/.

[5] Location trees enable XSD based tool development.. Hans-Juergen Rennau. 2017. http://xmllondon.com/2017/
xmllondon-2017-proceedings.pdf.

[6] RDFa Core 1.1 – Third Edition.. 2015. World Wide Web Consortium (W3C). https://www.w3.org/TR/rdfa-
core/.

[7] RDF 1.1 Turtle. 2014. World Wide Web Consortium (W3C). https://www.w3.org/TR/turtle/.

[8] A SHAX processor, transforming SHAX models into SHACL, XSD and JSON Schema.. Hans-Juergen Rennau.
2017. https://github.com/hrennau/shax.

[9] XML Path Language (XPath) 3.1. 2017. World Wide Web Consortium (W3C). https://www.w3.org/TR/
xpath-31/.

[10] XPath and XQuery Functions and Operators 3.1. 2017. World Wide Web Consortium (W3C). https://
www.w3.org/TR/xpath-functions-31/.

[11] XQuery and XPath Data Model 3.1. 2017. World Wide Web Consortium (W3C). https://www.w3.org/TR/
xpath-datamodel-31/.

[12] XQuery 3.1: An XML Query Language. 2017. World Wide Web Consortium (W3C). https://www.w3.org/
TR/xquery-31/.

[13] xsdplus - a toolkit for XSD based tool development. Hans-Juergen Rennau. 2017. https://github.com/hrennau/
xsdplus.

18

	RDFe – expression-based mapping of XML documents to RDF triples
	Table of Contents
	Introduction
	RDFe example
	Getting started
	Linking resources
	Adding a dynamic context

	RDFe language
	RDFe model components
	Semantic extension
	Semantic map
	Resource model
	Property model
	Context constructor

	Evaluation
	Input / Ouput
	Hybrid triples and preliminary resource description
	Asserted target nodes
	Processing steps

	RDFe for non-XML resources
	Conformance
	Minimal conformance
	Optional feature: XQuery Expressions Feature
	Implementation-defined extension functions

	Implementation
	Discussion
	A. Processing semantic maps - formal definition
	Section 1: Top-level rule
	Section 2: Resolving an rdfee to a set of triples
	Section 3: Resolving input documents to a set of rdfees
	Section 4: auxilliary rules

	Bibliography

