
Location trees enable XSD based tool
development

Hans-Jürgen Rennau, parsQube GmbH
<hans-juergen.rennau@parsqube.de>

Abstract

Conventional use of XSD documents is mostly limited to validation, documentation and the generation of
data bindings. The possibility of additional uses is little considered. This is probably due to the difficulty of
processing XSD, caused by its arcane graph structure. An effective solution might be a generic transformation of
XSD documents into a tree-structured representation, capturing the model contents in a transformation-friendly
way. Such a tree-structured schema derivative is offered by location trees, a format defined in this paper and
generated by an open-source tool. The intended use of location trees is an intermediate to be transformed into
interesting artifacts. Using a chemical image, location trees can play the role of a catalyst, dramatically lowering
the activation energy required to transform XSD into valuable substances. Apart from this capability, location
trees are composed of a novel kind of model components inviting the attachment of metadata. The resulting
metadata trees enable innovative tools, including source code generators. A few examples illustrate the new
possibilities, tentatively summarized as XSD based tool development.

Table of Contents
Introduction .. 1
Problem definition ... 2

The problem of understanding ... 2
The query problem .. 2
The transformation problem .. 2
The metadata problem .. 3

Location trees ... 3
A simple example ... 3
Info locations ... 6
Location tree structure ... 8
Location tree attributes ... 10
Open source tool for creating location trees .. 11

XSD based tool development ... 12
Getting your feet wet - first schema queries ... 12
Schema reporting - treesheets .. 13
Fact trees ... 14
Metadata trees and code generation .. 15

Discussion .. 19
Bibliography ... 19

Introduction
Well-written XML schema documents (XSD) contain a wealth of information. Its potential value is
by no means exhausted by conventional schema uses, which are validation, documentation and data
binding (e.g. [3]). Why are there hardly any tools available for unlocking the treasure? A major reason
is probably the sheer difficulty to write code which evaluates XSD documents reliably - coping with
the complete range of the XSD language, rather than being limited to XSD documents written in a
particular style.

The difficulty of processing XSD has a key reason: the semantics of XSD are graph-structured,
not tree-structured like the instance documents which XSD describes. To realize this, think of the

1

Location trees enable XSD
based tool development

many relationships between schema components, like uses-type, extends-type, restricts-type, uses-
group, uses-attributegroup, memberof-substitutiongroup. A clear perception of the problem suggests
a straightforward solution: we need a generic and freely accessible transformation of XSD into a
tree-structured equivalent. This can be used as a processing-friendly intermediate which is readily
transformed into useful artifacts. The new intermediate should play a role similar to a catalyst in
chemical processes: it is neither input nor output, but it reduces the energy required to turn input
into output. Availability of this catalyst might turn the development of XSD processing tools into a
fascinating and rewarding challenge.

Departing from an analysis of the main problems besetting XSD processing, this paper proposes a
solution based on a tree-structured representation of XSD contents. The new format is explained in
detail, and the new possibilities of XSD processing are illustrated by several examples.

Problem definition
XSDs describe the structure and constrain the contents of XML documents ([5], [6], [7], [8]). These
documents are tree-structured. The schema itself, however, is a peculiar mixture of tree and graph
structure. It is a graph whose nodes are trees (e.g. type definitions) as well as nodes within trees
(e.g. element declarations within type definitions). The edges of this graph connect trees (e.g. a
type references its base type) as well as tree nodes and trees (e.g. an element references its type
definition). The data model of XSD is justified by the conflicting needs to describe tree structure and to
support reusable components. (If not for the second, XSD would probably consist of straightforward
representations of the desired tree structures!) Nevertheless, the model as it is creates several problems
which deserve attention. Ignoring the problems, we would limit ourselves to the services of mature
and completed tools. Thus we would miss the chance to discover innovative uses of the precious
information content locked up in XSD documents.

The problem of understanding
To understand a schema means, in the first place, to understand the tree structure of its instance
documents. However, this is often difficult - or even virtually impossible - when studying the schema
contents in their raw form.

Fortunately, several commercial IDEs offer graphical representation of schemas. At first sight, they
give us everything we need in order to understand the schema: the graphical representation is very
clear and intuitive. But when working with large schemas, a serious shortcoming becomes obvious.
The graphical representation is very space consuming, rendering fast browsing of larger chunks of the
schema impossible. The screen is completely filled by a small number of tree nodes; a sliding glance
at more than a small piece of a large whole requires a "bumpy" navigation involving much scrolling
mixed with a series of clicks for alternately collapsing and expanding nodes.

The query problem
A second problem is closely related to the problem of understanding. Managing a large schema requires
more than clear pictures of pieces of tree structure: it requires querying the schema. Example questions:
Which data paths will be affected if I change this element declaration? (There may be hundreds of
them, but also none at all!) Do all <Foo> elements have the same type? What are the elements on
which a @Bar attribute may appear? Compared to the previous schema version, what data paths have
been added or removed? If the schema is large, the number of tree nodes is too large for finding the
answers by visual inspection. The IDEs give us icon trees, but no data trees, no data sets for queries
which give us the answers.

The transformation problem
Schemas describe the tree structure of instance documents, and in doing so they define crucial
information about relevant domain entities. Questions arise: What are the key entities, what are their

2

Location trees enable XSD
based tool development

properties, what are the data types of those properties, what are their cardinalities? We should have
tools to reorganize such information into comprehensive and intuitively structured representations.
But the required schema transformation is too difficult for a developer who is not a schema specialist.

The metadata problem
XML schema components can be associated with annotations. Special schema elements are available
for this purpose (xs:annotation, xs:documentation, xs:appinfo). The schema author
may also enhance any schema component with attributes which are not defined by the schema
language. The names of these additional attributes are only limited to belong to a non-XSD namespace.
This possibility to add arbitrary name/value pairs means language support for the addition of metadata.

When dealing with data-oriented XML, elements and attributes describe real-world entities and
metadata can extend these descriptions, e.g. adding processing hints. Metadata of an element
declaration might, for instance, specify the data source from where to retrieve the value of the element,
as well as the data target where to store it:

<xs:element name="loyaltyNumber" type="xs:string"
 x:dataSource= "msgs.travelInfo#//Passenger/@loyalty"
 x:dataTarget= "dbs.someDatabase.someTable.someColumn"/>

Such metadata could be put to many uses, including code generation and system consistency checks
(are the schema types of data source and data target compatible?). But the possibilites are much more
limited than they appear at first sight, due to the reuse of schema components (like type definitions)
in different contexts: such metadata would typically apply in one context, but not in the other. We
come to realize that many kinds of interesting metadata cannot be attached to the schema components
themselves: they should be attached to a novel kind of entity representing the use of a particular element
or attribute declaration at a particular place within a particular document type. Such component use
is an abstraction lying midway between a schema component and the items of an instance document.
This paper attempts to capture component use conceptually, proposing the notion of an info location.
It introduces the means to materialize component uses, turning them into the elements of a new kind
of resource called a location tree.

Location trees
An info location tree (location tree, for short) is an XML document which represents the tree structure
of documents described by an XML schema. More precisely, a location tree captures the tree structure
implied by a complex type definition or a group definition. As a rough approximation, think of location
trees as XML documents capturing the information visualized by the familiar graphical views of
schema documents.

A simple example
Let us look at a simple example. The following schema defines documents rooted in a
<Travellers> element:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://example.com/ns"
 targetNamespace="http://example.com/ns"
 elementFormDefault="qualified">
 <xs:element name="Travellers" type="TravellersType"/>
 <xs:complexType name="TravellersType">
 <xs:sequence>
 <xs:element name="Traveller" type="TravellerType"
 maxOccurs="unbounded"/>

3

Location trees enable XSD
based tool development

 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="BasicTravellerType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Age" type="xs:nonNegativeInteger" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="TravellerType">
 <xs:complexContent>
 <xs:extension base="BasicTravellerType">
 <xs:choice>
 <xs:element name="PassportNumber" type="xs:string"/>
 <xs:element name="LoyaltyNumber" type="LoyaltyNumberType"/>
 <xs:element name="CustomerID" type="xs:integer"/>
 </xs:choice>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="LoyaltyNumberType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="Airline" type="xs:string" use="required"/>
 <xs:attribute name="CheckStatus" type="CheckStatusEnum"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:simpleType name="CheckStatusEnum">
 <xs:restriction base="xs:string">
 <xs:enumeration value="NoCheck"></xs:enumeration>
 <xs:enumeration value="Ok"></xs:enumeration>
 <xs:enumeration value="NotOk"></xs:enumeration>
 <xs:enumeration value="Unknown"></xs:enumeration>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

Though this is a very small and simple schema, the tree structure of a Travellers document is not
immediately obvious. Figure 1 offers a graphical representation of this tree structure, created using
the XML IDE Oxygen 18.1.

4

Location trees enable XSD
based tool development

Figure 1. Graphical XSD representation (Oxygen 18.1)

Graphical representation of the Travellers schema, created by Oxygen 18.1

Such a representation is tremendously helpful, but its use is restricted to human inspection, as it
cannot be used as processing input. A processing-friendly alternative is offered by a location tree. The
following listing shows a pruned version, leaving out items (including type information) for the sake
of readibility:

<a:Travellers xmlns:a="http://example.com/ns">
 <a:Traveller z:occ="+">
 <a:Name/>
 <a:Age z:occ="?"/>
 <z:_choice_>
 <a:PassportNumber/>
 <a:LoyaltyNumber>
 <z:_attributes_>
 <Airline/>
 <CheckStatus occ="?">
 </z:_attributes_>
 </a:LoyaltyNumber>
 <a:CustomerID/>
 </z:_choice_>
 </a:Traveller>
</a:Travellers>

The meaning of this representation is easy to grasp intuitively. Instance documents have a
<Travellers> root element which contains one or more <Traveller> elements. Note the
@z:occ attribute on <Traveller> which indicates that the <Traveller> element of the
location tree represents a sequence of one or more elements in the instance document. We
understand that the first child of <Traveller> is a <Name> element, which is followed by an
optional <Age> element. The last element in <Traveller> is one of three possibilities: either a
<PassportNumber> element, or a <LoyaltyNumber> element, or a <CustomerID> element.
Note that the <z:_choice_> element does not represent any node in an instance document; rather, it
is an auxilliary element indicating that at this point of the structure the contents of instance documents
is given by exactly one of several possibilities. Finally we note that <LoyaltyNumber> elements
have a couple of attributes, @Airline (required) and @CheckStatus (optional).

5

Location trees enable XSD
based tool development

Roughly speaking, each location tree element which is not in the z-namespace represents a set of
XML elements or attributes - a set comprising all items found within instance documents "at the same
location". How to define the location? All items found at a particular location have the same data
path (e.g. /Travellers/Traveller/Age). Note that the inverse is not always true (though it is
always true in the example): two elements may have the same data path but occupy different locations.
This would for example be the case if an element’s content model were the sequence of child elements
<a>, , <c>, <a>. All <a> elements would have the same datapath, but the first and last siblings
among them would occupy two distinct locations. This matches the intuitive expectation of a location
tree or a graphical schema view: the siblings <a>, , <c>, <a> should certainly be represented by
four location nodes or graph icons, rather than three.

Info locations
In spite of the obvious intuitive meaning of location tree nodes, a formal definition of their semantics
is not trivial. The key abstraction is an info location, which is akin to an RDF class whose
members are XML nodes. An info location is a class of XML nodes belonging to a document
type’s instance documents, where class membership depends on the node’s validation path. The
validation path is the sequence of schema components used to validate the item itself, its ancestors
and their preceding siblings, when validated in document order. Two items are said to occupy the
same location if their validation paths are equal according to an algorithm of comparison. (Note.
The comparison of validation paths must be performed according to an algorithm, rather than as a
straightforward comparison, in order to ignore the irrelevant variability introduced by optional and
multiple occurrences.)

The following listing shows the complete location tree of <Travellers> elements. Element
locations are represented by elements not in the z-namespace, excluding child elements
of <_attributes_> elements. Attribute locations are represented by child elements of
<z:_attributes_> elements. The properties of the info locations are exposed by attributes.

<?xml version="1.0" encoding="UTF-8"?>
<z:locationTrees xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:a="http://example.com/ns"
 xmlns:z="http://www.xsdplus.org/ns/structure"
 count="1">
 <z:locationTree compKind="elem"
 z:name="a:Travellers"
 z:loc="element(a:Travellers)"
 z:type="a:TravellersType"
 z:typeLoc="complexType(a:TravellersType)">
 <z:nsMap>
 <z:ns prefix="a" uri="http://example.com/ns"/>
 <z:ns prefix="xs" uri="http://www.w3.org/2001/XMLSchema"/>
 <z:ns prefix="z" uri="http://www.xsdplus.org/ns/structure"/>
 </z:nsMap>
 <a:Travellers
 z:name="a:Travellers"
 z:type="a:TravellersType"
 z:typeVariant="cc"
 z:typeLoc="complexType(a:TravellersType)">
 <a:Traveller
 z:name="a:Traveller"
 z:occ="+"
 z:type="a:TravellerType"
 z:typeVariant="cc"
 z:baseType="a:BasicTravellerType"
 z:derivationKind="extension"
 z:typeLoc="complexType(a:TravellerType)"
 z:loc="complexType(a:TravellersType)/

6

Location trees enable XSD
based tool development

 xs:sequence/a:Traveller"
 name="Traveller"
 type="TravellerType"
 maxOccurs="unbounded">
 <a:Name
 z:name="a:Name"
 z:type="xs:string"
 z:typeVariant="sb"
 z:typeDef="string"
 z:loc="complexType(a:BasicTravellerType)/
 xs:sequence/a:Name"
 name="Name"
 type="xs:string"/>
 <a:Age z:name="a:Age"
 z:occ="?"
 z:type="xs:nonNegativeInteger"
 z:typeVariant="sb"
 z:typeDef="nonNegativeInteger"
 z:loc="complexType(a:BasicTravellerType)/
 xs:sequence/a:Age"
 name="Age"
 type="xs:nonNegativeInteger"
 minOccurs="0"/>
 <z:_choice_>
 <a:PassportNumber
 z:name="a:PassportNumber"
 z:type="xs:string"
 z:typeVariant="sb"
 z:typeDef="string"
 z:loc="complexType(a:TravellerType)/
 xs:choice/a:PassportNumber"
 name="PassportNumber"
 type="xs:string"/>
 <a:LoyaltyNumber
 z:name="a:LoyaltyNumber"
 z:type="a:LoyaltyNumberType"
 z:typeVariant="cs"
 z:baseType="xs:string"
 z:derivationKind="extension"
 z:builtinBaseType="xs:string"
 z:contentType="xs:string"
 z:contentTypeVariant="sb"
 z:contentTypeDef="string"
 z:typeLoc="complexType(a:LoyaltyNumberType)"
 z:loc="complexType(a:TravellerType)/
 xs:choice/a:LoyaltyNumber"
 name="LoyaltyNumber"
 type="LoyaltyNumberType">
 <z:_attributes_>
 <Airline
 z:name="Airline"
 z:type="xs:string"
 z:typeVariant="sb"
 z:typeDef="string"
 z:loc="complexType(a:LoyaltyNumberType)/
 @Airline"
 name="Airline"
 type="xs:string"

7

Location trees enable XSD
based tool development

 use="required"/>
 <CheckStatus
 z:name="CheckStatus"
 z:occ="?"
 z:type="a:CheckStatusEnum"
 z:typeVariant="sa"
 z:typeDef="string: enum=(NoCheck|NotOk|Ok|Unknown)"
 z:baseType="xs:string"
 z:derivationKind="restriction"
 z:builtinBaseType="xs:string"
 z:typeLoc="simpleType(a:CheckStatusEnum)"
 z:loc="complexType(a:LoyaltyNumberType)/
 @CheckStatus"
 name="CheckStatus"
 type="CheckStatusEnum">
 <z:_stypeInfo_ z:name="a:CheckStatusEnum">
 <z:_builtinType_ z:name="xs:string"/>
 <z:_restriction_ z:name="a:CheckStatusEnum">
 <z:_enumeration_ value="NoCheck"/>
 <z:_enumeration_ value="Ok"/>
 <z:_enumeration_ value="NotOk"/>
 <z:_enumeration_ value="Unknown"/>
 </z:_restriction_>
 </z:_stypeInfo_>
 </CheckStatus>
 </z:_attributes_>
 </a:LoyaltyNumber>
 <a:CustomerID
 z:name="a:CustomerID"
 z:type="xs:integer"
 z:typeVariant="sb"
 z:loc="complexType(a:TravellerType)/
 xs:choice/a:CustomerID"
 name="CustomerID"
 type="xs:integer"/>
 </z:_choice_>
 </a:Traveller>
 </a:Travellers>
 </z:locationTree>
</z:locationTrees>

The next two sections give an overview of the elements and attributes used by location trees.

Location tree structure
Now we take a closer look at the structure of location trees. The following table summarizes the
elements of which a location tree is composed. (Descendants of <z:_stypeInfo> elements are
omitted.)

Table 1. Location tree elements

Location tree element Meaning XSD element

Any element not in the z-
namespace

Represents an element or
attribute location

xs:element, xs:attribute

z:_attributes_ Wraps the representations of all
attribute locations belonging to
an element location

-

8

Location trees enable XSD
based tool development

Location tree element Meaning XSD element

z:_sequence_ Represents a sequence
compositor

xs:sequence

z:_choice_ Represents a choice
compositor

xs:choice

z:_all_ Represents an all compositor xs:all
z:_any_ Represents an element wildcard xs:any
z:_anyAttribute_ Represents an attribute wildcard xs:anyAttribute
z:_sgroup_ Contains the element locations

corresponding to a substitution
group

-

z:_groupContent_ Signals a group reference
which remains unresolved as it
constitutes a cyclic definition
(the reference occurs in the
content of a member of the
referenced group or in its
descendant)

xs:group (with a @ref attribute)

z:_stypeInfo_ Structured representation of a
simple type definition

xs:simpleType

z:_annotation_ Reports a schema annotation xs:annotation
z:_documentation_ Reports a schema

documentation
xs:documentation

z:_appinfo_ Reports a schema appinfo xs:appinfo

Note that group definitions (<xs:group>) are not represented by distinct location tree elements,
as a group reference is represented by the content of the referenced group. Similarly, attribute group
references are always resolved and attribute group definitions (<xs:attributeGroup> do not
appear as distinct entities.

An important aspect of location tree structure is the representation of element composition (sequence,
choice and all group). Representation rules aim at simplification: the number of group compositor
elements is reduced, nested grouping is replaced by flattened grouping if possible, and irrelevant
variability of XSD content is removed by normalized representation. Simplification is achieved by the
definition of default composition and rules of group normalization.

Sequence is the default composition: any sequence of items (element locations and or compositors)
which are children of an element location represents a sequence of child elements. The location tree
uses only such <z:_sequence_> elements as cannot be left out without loss of information. This is
the case when the sequence has a minimum or maximum occurrence unequal 1, or when the sequence
is child of a choice. Group normalization is achieved by content rewriting. It replaces the use of
compositors as found in the XSDs by a simpler model which is equivalent with respect to the instance
documents described. Normalization rules effect the removal of "pseudo groups" containing a single
item, the flattening of nested choices and the flattening of nested sequences. Note that the removal
of a compositor element may change the occurrence constraints of its child elements. As an example,
consider a pseudo group occurring one or more times and containing an optional element (occurrence
"zero or one"). After unwrapping this element, its occurrence will be "zero or more".

An important aspect of location tree contents is the handling of type derivation. Remember the general
goal to capture the structure of instance documents by a model structure which is as similar and
straightforward as possible. Element content defined by a derived complex type is always represented
in resolved form, expressing the integration of base type content and derived type content as defined
by the XML schema specification. Consider a type extending another type with complex content.
The derived type is treated like a non-derived type with equivalent content: its attributes comprise all

9

Location trees enable XSD
based tool development

attributes of derived type definition and the (recursively resolved) base type definition; and its content
is a sequence containing the contents of the (recursively resolved) base type, followed by the explicit
content model of the derived type. Subsequent group normalization ensures that derivation does not
introduce any structural complexity.

Location tree attributes
The elements of a location tree (element and attribute locations, group compositors, wildcards
and substitution groups) represent model components – the building blocks of which the model is
composed. The properties of these components are represented by info attributes. Example properties
are the element or attribute name, type name and cardinality constraints. The following table compiles
the most important attributes used to express component properties.

Table 2. Property attributes

Location tree attribute Property Remarks

z:name Element name, attribute name As normalized qualified name
z:occ Cardinality Examples: ?, *, +, 1-4, 2
z:type Type name As normalized qualified name

sb: builtin type
sa: simple type, atomic
sl: simple type, list
su: simple type, union
cs: complex type, simple
content
cc: complex type, complex
content

z:typeVariant Type variant

cc: complex type, empty
content

z:typeDef A human-readible string
representation of a simple type
definition

Examples:
string:enum=(NotOk|Ok)
string:maxLen=64

z:baseType Base type name As normalized qualified name
z:builtinBaseType Name of the builtin base type (if

type variant = sa)
As normalized qualified name

z:contentType Name of the content type (if
type variant = cs)

As normalized qualified name

z:contentTypeVariant Content type variant (if type
variant = cs)

See z:typeVariant; value is one
of: sb, sa, sl, su

z:contentTypeDef A human-readible string
representation of the content
type (if type variant = cs)

Examples:
decimal:range=[0.901,1.101]
string:pattern=#[A-Z]{2}#

z:itemType Name of the list item type (if
type variant = sl)

As normalized qualified name

z:itemTypeVariant Item type variant (if type
variant = sl)

See z:typeVariant; value is one
of: sb, sa, su

z:typeLoc XSD type location If item has a user-defined type:
identifies the location of the
type definition within the XSDs

10

Location trees enable XSD
based tool development

Location tree attribute Property Remarks

z:loc XSD component location Identifies the location of the
component within the XSDs

any name without namespace XSD component property (e.g.
{min occurs})

The attribute is a copy of the
XSD attribute found on the
XSD element represented by
the location tree element (e.g.
@minOccurs)

any name in a namespace which
is not the z-namespace

XSD annotation property (e.g.
{myorg:lastUpdate})

The attribute is a copy of the
annotation attribute found on
the XSD element represented by
the location tree element (e.g.
@myorg:lastUpate)

Normalized qualified names use prefixes which are derived from the target namespaces (and possibly
also annotation namespaces) encountered in the set of XSDs currently considered. The mapping of
namespace URI to prefix is achieved by assigning to the sorted set of namespace URIs the prefixes a –
y, a2 – y2 etc. The prefix z is reserved for the URI http://www.xsdplus.de/ns/structure, and the prefix
xs is used for the XSD namespace. All URI to prefix mappings are documented by a <z:nsMap>
element which is child of the <z:locationTree> element.

The location attributes (@z:loc, @z:typeLoc) identify an individual XSD component and thus
document the alignment between location tree and XSD components. The XSD component is
identified by a simple path syntax consisting of a first step identifying a top-level component (e.g.
complexType(a:TravellersType)) followed by an optional logical path (e.g. xs:choice/
a:LoyaltyNumber) drilling down into the top-level component. The @z:loc attribute of an element
location (attribute location) identifies the element declaration (attribute declaration) aligned with the
location. Similarly, @z:typeLoc identifies the type definition referenced by an element or attribute
location.

Two further attributes are used in order to flag an element location or a group reference as "recursion
point":

Table 3. Recursion point attributes

Location tree attribute Meaning Value

z:recursionType The type of the parent element
location is equal to the type of
an ancestor element location.

Type name, as normalized
qualified name

z:recursionGroup Flags a group reference found
within the contents of an
element which is a member of
the referenced group, or is a
descendant of such a member

Group name, as normalized
qualified name

Open source tool for creating location trees
An open source tool for transforming arbitrary XSD into location trees is available [10]. The tool is
written in the XQuery language [9]. It can be used as a command-line tool, or as an XQuery library
ready for import by XQuery programs. Execution requires an XQuery processor supporting XQuery
version 3.1 or higher. See [10] for a documentation of tool usage. Command-line invocation requires
two mandatory parameters:

• A FOXpath expression [2] selecting one or more XSD documents
• A name pattern selecting the schema components for which to construct the location trees; the name

pattern can alternatively be used to select element declarations, complex type definitions or group
definitions

11

Location trees enable XSD
based tool development

Tool output is an XML document with a <z:locationTrees> root element containing
<z:locationTree> elements representing location trees obtained for the selected schema
components. Here comes an example call, using the XQuery processor BaseX [1]:

basex –b request=ltrees?xsd=/projects/ota//*.xsd,enames=*RQ xsdp.xq

It creates location trees for each element declaration whose name ends with RQ.

XSD based tool development
Location trees are ordinary XML documents. The semantic graph structure of XSD documents
has been replaced by semantic tree structure, so that processing location trees is a straightforward
operation. Initial transformation of XSD into location trees makes valuable information, hitherto
virtually out of reach from a developer's point of view, readily accessible. Location trees thus
encourage the development of innovative XSD processing tools. This section illustrates the new
possibilites by several examples ranging from very simple to fairly complex tools.

Getting your feet wet - first schema queries
The simplest way of using location trees consists in translating questions about a schema into queries
of its location trees. As an example, consider this question about a schema: at which places (expressed
as data paths) do instance documents with a <Travellers> root contain elements with the name
"CustomerID"?

Our starting point is the location tree obtained for the top-level element declaration with name
"Travellers". The following XQuery query, which expects as context node a z:locationTrees
document, gives the answer:

declare namespace z="http://www.xsdplus.org/ns/structure";
declare namespace f="http://www.xsdplus.org/ns/xquery-functions";

declare function f:path($e as element()) as xs:string {
 '/'||string-join((
 $e/ancestor::*[not(self::z:*)]/local-name(),
 $e/concat(parent::z:_attributes_/'@', local-name())), '/')
};

//*:CustomerID/f:path(.)

Extending this adhoc query into a veritable tool is easy: we introduce two external variable which
expect name patterns for the document root element and the items of interest:

declare namespace z="http://www.xsdplus.org/ns/structure";
declare namespace f="http://www.xsdplus.org/ns/xquery-functions";
declare variable $root external := '*';
declare variable $item external := '*';

declare function f:path($e as element()) as xs:string {
 '/'||string-join((
 $e/ancestor::*[not(self::z:*)]/local-name(),
 $e/concat(parent::z:_attributes_/'@', local-name())), '/')
};

declare function f:regex($name as xs:string) as xs:string {
 concat('^', replace(replace($name, '*', '.*'), '\?', '.'), '$')};

/*/z:locationTree/(* except z:*)[matches(local-name(.), f:regex($root), 'i')]
//(* except z:*)[matches(local-name(), f:regex($item), 'i')]/f:path(.)

12

Location trees enable XSD
based tool development

After storing this code in a file locationPaths.xq and writing the location trees of all top-level
elements of the Niem 3.0 XSDs (downloaded from [4] into a file ltrees-niem30.xml:

basex -b "request=ltree?xsd=/xsdbase/niem-3.0//*.xsd,enames=*,global"
 /tt/xsdp/xsdp.xq > ltrees-niem30.xml

the following invocation

basex -i ltrees-niem30.xml -b item=*xml* locationPath.xq

yields this output:

/EDXLDistribution/contentObject/nonXMLContent
/EDXLDistribution/contentObject/xmlContent
/EDXLDistribution/contentObject/xmlContent/keyXMLContent
/EDXLDistribution/contentObject/xmlContent/embeddedXMLContent

These four data paths leading to items with a name containing "xml" have been selected from 90763
data paths which can be obtained from the location trees in a straightforward way (see function
f:path above). The example shows how simple queries applied to location trees can give valuable
insight which would be very difficult to obtain by processing the XSD documents themselves. The
next section discusses more complex uses of location trees.

Schema reporting - treesheets
Location trees are not meant for human inspection – they are intermediates serving as input to the
query or transformation producing an artifact of interest. An important category of such artifacts are
various representations of the schema-defined tree structures and information associated with their
main building blocks, the elements and attributes.

A treesheet is a text document which combines an indentation-based representation of the tree
structure (on the left-hand side) with information about the info locations of which the tree is composed
(on the right-hand side). The following treesheet, for example

Element: Travellers; Type: TravellersType
==

Travellers ~ ~ ctype: a:TravellersType
. Traveller+ ~ ~ ctype: a:TravellerType
. . Name type: string
. . Age? type: nonNegativeInteger
. . choice{
. . 1 PassportNumber . type: string
. . 2 LoyaltyNumber .. type: string
. . 2 @Airline type: string
. . 2 @CheckStatus? . type: string: enum=(NoCheck|NotOk|Ok|Unknown)
. . 3 CustomerID ... type: integer
. . }

displays type information, whereas the next one

Element: Travellers; Type: TravellersType
==

Travellers ~ ~ anno: A travel party.
. Traveller+ ~ ~ anno: Represents an individual traveller.
. . Name anno: The surname, as used in the passport.
. . Age? anno: The age at checkin date.
. . choice{
. . 1 PassportNumber . anno: The passport number in latin letters.

13

Location trees enable XSD
based tool development

. . 2 LoyaltyNumber .. anno: The Loyalty number, assigned by the airline.

. . 2 @Airline anno: Airline, identified by IATA code.

. . 2 @CheckStatus? . anno: Specifies if checked and the check result.

. . 3 CustomerID ... anno: The customer ID, assigned by the back office.

. . }

displays the contents of schema annotations, retrieved from <xs:documentation> elements of
the schema. These examples align the tree items with information originating from the XSD (type
information and schema annotation). The information might however also be metadata externally
provided, or facts based on instance document data. (See the following sections for more about facts
and metadata.) Each type of treesheet can be viewed as a different facet of the schema-defined tree.
Opening different treesheets of the same document type in an editor and switching between their tabs
can offer an interesting experience of contemplating complex information trees from different sides.
The open source tool [10] provides a treesheet operation transforming XSD components into
treesheets of various kinds and controlled by various representational options.

Fact trees
A location tree can be regarded as a model of item use: given a document type, where (data path) to
use what (element/attribute name) and how (number of occurrences, data type or content structure).
Any set of instance documents, on the other hand, generates facts about how items are actually used.
Example facts about an info location are the frequency of documents containing items in this location,
as well as the value strings used in these items. Interesting reports can be created by merging these
facts into a pruned version of the location tree. Recipe:

• Starting point: location tree
• Remove all elements which do not represent compositors, elements or attributes
• Remove all or a selection of attributes
• Add attributes conveying facts

A simple example uses several attributes telling us how info locations are actually used:

• @dcount – the number of documents observed (attribute at the root element only)
• @dfreq – the relative frequency of documents containing an item at this location
• @ifreq – the mean/minimum/maximum number of items at this location, ignoring documents

without items in this location (attribute omitted if the schema does not allow for multiple items)

The resulting fact tree may reveal interesting details, like choice branches never used, or optional
elements never or virtually always used:

<a:Travellers xmlns:a="http://example.com/ns" dcount="78925">
 <a:Traveller z:occ="+" dfreq="1.00" ifreq="3.01 (1–8)">
 <a:Name dfreq="1.00"/>
 <a:Age z:occ="?" dfreq="0.99"/>
 <z:_choice_>
 <a:PassportNumber dfreq="0.64"/>
 <a:LoyaltyNumber dfreq="0.36">
 <z:_attributes_>
 <Airline dfreq="0.35"/>
 <CheckStatus dfreq="0.09"/>
 </z:_attributes_>
 </a:LoyaltyNumber>
 <a:CustomerID dfreq="0"/>
 </z:_choice_>
 </a:Traveller>
 </a:Travellers>

If the fact tree has been obtained for a set of request messages belonging to test suites, attributes like
@dfreq can express test coverage in a very interesting way.

14

Location trees enable XSD
based tool development

A fact tree can be transformed into a treesheet:

Element: Travellers; Type: TravellersType
==

Travellers ~ ~ count: 78925
. Traveller+ ~ ~ dfreq: ********** (1.00, ifreq=3.01 (1-8)
. . Name dfreq: ********** (1.00)
. . Age? dfreq: ********** (0.99)
. . choice{
. . 1 PassportNumber . dfreq: ****** (0.64)
. . 2 LoyaltyNumber .. dfreq: **** (0.36)
. . 2 @Airline dfreq: **** (0.35)
. . 2 @CheckStatus .. dfreq: * (0.09)
. . 3 CustomerID ... dfreq: (0)
. . }

Note that the concept of "facts about locations" is not limited to usage statistics. The next section
discusses the enhancement of locations by metadata. Such metadata may imply new kinds of facts
which can be represented by specialized fact trees. Assume, for example, location metadata which
specify from where to retrieve item data. If those "places" can also be expressed as info locations
(e.g. belonging to the location tree of some web service message), derived facts of data consistency
emerge. If the data source of an enumerated string is an unconstrained string, a data type inconsistency
emerges as a fact.

The effort required to transform location trees into treesheets and fact trees is moderate, although it is
substantially greater than the simple queries shown earlier. The final section about the use of location
trees presents a complex application performing code generation. It is based on metadata trees which
are created by a semi-automatic procedure: automated transformation of location trees into an initial
version of a metadata tree, followed by manual editing which replaces the generated dummy values
of metadata attributes with real values.

Metadata trees and code generation
Location trees are composed of nodes representing the elements and attributes which can be used by
instance documents. Adding to the nodes of a location tree metadata, we obtain a metadata tree. Recipe:

• Starting point: location tree
• Remove all elements which do not represent compositors, elements or attributes
• Remove all or a selection of attributes
• Add attributes specifying metadata

Like a location tree, a metadata tree captures the structure of instance documents. Unlike location tree
nodes, however, metadata tree nodes describe the items of instance documents beyond XSD-defined
information. If metadata provide information about how to process the items, the metadata tree may
be transformed into source code which implements the processing.

This section discusses an example of source code generation based on metadata trees. Our goal
is a generator of program code which implements the transformation of source documents with a
particular document type (e.g. "TravelInfo") into target documents with a different document type (e.g.
"Travellers"). The solution involves the following main steps:

1. Design a metadata model
2. Create a metadata tree generator
3. Create a metadata tree transformator

Design a metadata model
Our approach is to use a metadata tree derived from the location tree of the target document type.
The metadata model must define a set of metadata which suffices to determine every detail of the

15

Location trees enable XSD
based tool development

code to be generated. Note that the required types of metadata may be different for different nodes
of the location tree: they will depend on node properties like the content type variant (simple versus
complex) or occurrence constraints. Each type of metadata is represented by attributes with a particular
name. Metadata values are XPath expressions to be evaluated in the context of source document nodes.
The following table provides an overview of the more important metadata types and how their usage
depends on node properties.

Table 4. Metadata model for doc2doc transformation

Attribute name Node condition Meaning Example

alt Location of a simple
content element or
attribute, which is
optional

XPath expression;
evaluated if @src
yields the empty
sequence; if @alt yields
a non-empty value, a
target node is created
and the value is used

'#UNKNOWN'

case Child of a
<z:_choice_>

XPath expression; the
selected choice branch
is the first child of the
choice compositor
whose @case has a
true effective boolean
value

@Success eq
"false"

ctxt Complex element
location

XPath expression; its
value is used as the new
data source context

Services/Hotel

default Location of a simple
content element or
attribute, which is
mandatory

XPath expression;
its value is used if
@src yields the empty
sequence

'?'

for-each Element location (or
compositor) with
maxOccurs > 1

XPath expression;
for each item of the
expression value an
element node is created
(or compositor contents
are evaluated)

Contacts/Contact

if Complex element
location (or
compositor) which is
optional

XPath expression; if its
effective boolean value
is true, an element
node is created (or
compositor contents are
evaluated)

Contacts/Contact

src Location of a simple
content element or
attribute

XPath expression;
its value is used as
element content or
attribute value

@Currency

Create a metadata tree generator
Writing the metadata tree generator is a fairly straightforward task: the generator transforms location
trees into a modified copy in which most location tree attributes are removed and attributes
representing the metadata are added. The values of metadata attributes are placeholders, to be
replaced by hand-editing. For each location tree node an appropriate selection of metadata attributes
is made, according to the "Node condition" column in table Table 4, “Metadata model for doc2doc

16

Location trees enable XSD
based tool development

transformation”. Conditions are checked by evaluating the attributes of the location tree node. The
condition "Location of a simple content element or attribute", for instance, is true if the location tree
attribute @z:typeVariant has a value starting with "s" or equal to "cs". If the condition also requires
that the location is optional, the @z:occ attribute is also checked – and so forth.

Applying our metadata tree generator to the Travellers schema, we obtain this initial metadata
tree:

<a:Travellers xmlns:a="http://example.com/ns"
 ctxt="###">
 <a:Traveller for-each="###">
 <a:Name src="###"
 default=""/>
 <a:Age src="###"
 alt=""/>
 <z:_choice_>
 <a:PassportNumber
 case="###"
 src="###"
 default=""/>
 <a:LoyaltyNumber case="###"
 ctxt="###"
 src="###"
 default="">
 <z:_attributes_>
 <Airline
 src="###"
 default=""/>
 <CheckStatus
 src="###"
 alt=""/>
 </z:_attributes_>
 </a:LoyaltyNumber>
 <a:CustomerID case="###"
 src="###"
 default=""/>
 </z:_choice_>
 </a:Traveller>
</a:Travellers>

Create a metadata tree transformator
A metadata tree transformator transforms a metadata tree into a useful artifact. In our present
context, the metadata tree transformator is a code generator. It transforms the metadata tree into code
implementing the transformation of a source document into a target document. If code in several
programming languages is required, we can create several transformators, one for each required
language. Here, we limit ourselves to writing a code generator creating XQuery code. The task is
neither trivial, nor exceedingly difficult. See [10], module xmap2xq.xqm for a solution.

Using the code generator
Now we are ready to use our code generator. Let the transformation source be documents similar to this:

<travelInfo xmlns="http://example2.com/msgs">
 <time startDate="2017-07-31"
 endDate="2017-08-08"/>
 <players>
 <passengers>
 <passenger surName="Boateng"

17

Location trees enable XSD
based tool development

 firstName="Rachel"
 bookingAge="32"
 loyalty="KLM:1234567"
 loyaltyCheck="Ok"/>
 <passenger surName="Boateng"
 firstName="Belinda"
 documentNr="9293949596"/>
 </passengers>
 </players>
</travelInfo>

We edit the metadata tree appropriately:

<a:Travellers xmlns:a="http://example.com/ns"
 ctxt="/s:travelInfo/s:players/s:passengers">
 <a:Traveller for-each="s:passenger">
 <a:Name src="@surName"
 default=""/>
 <a:Age src="@bookingAge"
 alt=""/>
 <z:_choice_>
 <a:PassportNumber
 case="@documentNr"
 src="@documentNr"
 default=""/>
 <a:LoyaltyNumber case="@loyalty"
 ctxt="."
 src="@loyalty/substring-after(., ':')"
 default="'0'">
 <z:_attributes_>
 <Airline src="@loyalty/substring-before(., ':')"
 default="'#UNKNOWN-AIRLINE'"/>
 <CheckStatus
 src="@loyaltyCheck"
 alt="'Unknown'"/>
 </z:_attributes_>
 </a:LoyaltyNumber>
 <a:CustomerID case="@custId"
 src="@custId"
 default=""/>
 </z:_choice_>
 </a:Traveller>
 </a:Travellers>

Passing this metadata tree to the code generator, we obtain the following generated XQuery program:

let $c := /s:travelInfo/s:players/s:passengers
return if (empty($c)) then () else

<a:Travellers xmlns:a="http://example.com/ns">{
 for $c in $c/s:passenger
 return
 <a:Traveller>{
 let $v := $c/@surName
 return
 <a:Name>{string($v)}</a:Name>,
 let $v := $c/@bookingAge
 return
 if (empty($v)) then ()

18

Location trees enable XSD
based tool development

 else <a:Age>{string($v)}</a:Age>,
 if ($c/@documentNr) then
 let $v := $c/@documentNr
 return
 <a:PassportNumber>{string($v)}</a:PassportNumber>
 else if ($c/@loyalty) then
 let $contentV := $c/@loyalty/substring-after(., ':')
 let $contentV := if ($contentV) then $contentV else '0'
 return
 <a:LoyaltyNumber>{
 let $v := $c/@loyalty/substring-before(., ':')
 let $v := if ($v) then $v else '#UNKNOWN-AIRLINE'
 return
 attribute Airline {$v},
 let $v := $c/@loyaltyCheck
 let $v := if ($v) then $v else 'Unknown'
 return
 attribute CheckStatus {$v},
 $contentV
 }</a:LoyaltyNumber>
 else if ($c/@custId) then
 let $v := $c/@custId
 return
 <a:CustomerID>{string($v)}</a:CustomerID>
 else ()
 }</a:Traveller>
 }</a:Travellers>

Discussion
The main building block of a location tree constitutes an interesting new concept. A location is
obviously a model entity, as it depends on schema contents, never on instance document contents. It
encapsulates model information about a well-defined class of real world data: the items occurring in
a particular document type at a particular place. The limitation and precision of the modelling target
make a location particularly well-suited for novel kinds of metadata, as well as a suitable entity for
defining and collecting related facts. Locations, formally defined and readily available in materialized
form, might influence the way how one thinks and speaks about structured information.

Appreciation of location trees entails additional appreciation for XSD, as location trees are derived
from XSD. Location trees unite "the best of two worlds", XSD's advanced features of model design
and component reuse, and a clear and straightforward relationship between model entity and real world
data, which enables intense use of the model beyond validation and documentation.

Bibliography
[1] BaseX - an open source XML database. BaseX. 2017. http://basex.org.

[2] FOXpath navigation of physical, virtual and literal file systems. Hans-Juergen Rennau. 2017. http://
archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf.

[3] JAXB – reference implementation and specification. java.net. https://jaxb.java.net/.

[4] NIEM 3.0. Georgia Tech Research Institute, Inc. (US). https://release.niem.gov/niem/3.0/.

[5] W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. World Wide Web Consortium (W3C).
2014. https://www.w3.org/TR/xmlschema11-1/.

19

Location trees enable XSD
based tool development

[6] W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. World Wide Web Consortium (W3C).
2014. https://www.w3.org/TR/xmlschema11-2/.

[7] XML Schema Part 1: Structures Second Edition. World Wide Web Consortium (W3C). 2004. https://
www.w3.org/TR/xmlschema-1/.

[8] XML Schema Part 2: Datatypes Second Edition. World Wide Web Consortium (W3C). 2004. https://
www.w3.org/TR/xmlschema-2/.

[9] XQuery 3.1: An XML Query Language. World Wide Web Consortium (W3C). 2017. https://www.w3.org/TR/
xquery-31/.

[10] xsdplus - a toolkit for XSD based tool development. Hans-Juergen Rennau. 2017. https://github.com/hrennau/
xsdplus.

20

	Location trees enable XSD based tool development
	Table of Contents
	Introduction
	Problem definition
	The problem of understanding
	The query problem
	The transformation problem
	The metadata problem

	Location trees
	A simple example
	Info locations
	Location tree structure
	Location tree attributes
	Open source tool for creating location trees

	XSD based tool development
	Getting your feet wet - first schema queries
	Schema reporting - treesheets
	Fact trees
	Metadata trees and code generation
	Design a metadata model
	Create a metadata tree generator
	Create a metadata tree transformator
	Using the code generator

	Discussion
	Bibliography

